Cellular and Molecular Life Sciences

, Volume 67, Issue 24, pp 4197–4211 | Cite as

Cartilage biology, pathology, and repair

  • Daniel Umlauf
  • Svetlana Frank
  • Thomas Pap
  • Jessica Bertrand


Osteoarthritis is one of the most common forms of musculoskeletal disease and the most prominent type of arthritis encountered in all countries. Although great efforts have been made to investigate cartilage biology and osteoarthritis pathology, the treatment has lagged behind that of other arthritides, as there is a lack of effective disease-modifying therapies. Numerous approaches for dealing with cartilage degradation have been tried, but enjoyed very little success to develop approved OA treatments with not only symptomatic improvement but also structure-modifying effect. In this review we discuss the most recent findings regarding the regulation of cartilage biology and pathology and highlight their potential therapeutic values.


Osteoarthritis Cartilage Cartilage repair Disease modifying drugs 


  1. 1.
    Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41(5):778–799PubMedCrossRefGoogle Scholar
  2. 2.
    Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Arthritis Rheum 58(1):26–35PubMedCrossRefGoogle Scholar
  3. 3.
    Hamel MB, Toth M, Legedza A, Rosen MP (2008) Joint replacement surgery in elderly patients with severe osteoarthritis of the hip or knee—decision making, postoperative recovery, and clinical outcomes. Arch Intern Med 168(13):1430–1440PubMedCrossRefGoogle Scholar
  4. 4.
    Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213(3):626–634PubMedCrossRefGoogle Scholar
  5. 5.
    Martinek V (2003) Anatomy and pathophysiology of articular cartilage. Dtsche Z Sportmed 54(6):166–170Google Scholar
  6. 6.
    Fernandes JC, Martel-Pelletier J, Pelletier JP (2002) The role of cytokines in osteoarthritis pathophysiology. Biorheology 39(1–2):237–246PubMedGoogle Scholar
  7. 7.
    Goldring MB (1999) The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res 40(1):1–11PubMedCrossRefGoogle Scholar
  8. 8.
    Goldring SR, Goldring MB (2004) The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res 427:S27–S36PubMedCrossRefGoogle Scholar
  9. 9.
    Loughlin J (2005) The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med 7(9):1–12PubMedCrossRefGoogle Scholar
  10. 10.
    Abramson SB, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11(3):227PubMedCrossRefGoogle Scholar
  11. 11.
    Buckwalter JA, Brown TD (2004) Joint injury, repair, and remodeling. Clin Orthop Relat Res 423:7–16PubMedCrossRefGoogle Scholar
  12. 12.
    Naumann A, Dennis JE, Awadallah A, Carrino DA, Mansour JM, Kastenbauer E, Caplan AI (2002) Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 50(8):1049–1058PubMedGoogle Scholar
  13. 13.
    Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33(1):1–13PubMedCrossRefGoogle Scholar
  14. 14.
    Burgeson RE, Hebda PA, Morris NP, Hollister DW (1982) Human cartilage collagens. Comparison of cartilage collagens with human type V collagen. J Biol Chem 257(13):7852–7856PubMedGoogle Scholar
  15. 15.
    Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4(1):30–35PubMedCrossRefGoogle Scholar
  16. 16.
    Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop.Relat Res 391(Suppl):S26–S33PubMedCrossRefGoogle Scholar
  17. 17.
    Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12(2):69–78PubMedCrossRefGoogle Scholar
  18. 18.
    Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220PubMedCrossRefGoogle Scholar
  19. 19.
    DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthr Cartil 8(5):309–334PubMedCrossRefGoogle Scholar
  20. 20.
    Mitrovic D (1978) Development of di-arthrodial joints in rat embryo. Am J Anat 151(4):475–485PubMedCrossRefGoogle Scholar
  21. 21.
    Holder N (1977) Experimental investigation into early development of chick elbow joint. J Embryol Exp Morphol 39:115–127PubMedGoogle Scholar
  22. 22.
    Bland YS, Ashhurst DE (1996) Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibrillar collagens. Anat Embryol 194(6):607–619PubMedCrossRefGoogle Scholar
  23. 23.
    Itoh T, Matsuda H, Tanioka M, Kuwabara K, Itohara S, Suzuki R (2002) The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J Immunol 169(5):2643–2647PubMedGoogle Scholar
  24. 24.
    Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM (2004) BMP receptor signaling is required for postnatal maintenance of articular cartilage. Plos Biol 2(11):1815–1827CrossRefGoogle Scholar
  25. 25.
    Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM, Iwamoto M, Enomoto-Iwamoto M, Pacifici M (2008) A distinct cohort of progenitor cells participates in synovial Joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316(1):62–73PubMedCrossRefGoogle Scholar
  26. 26.
    Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today 75(3):237–248PubMedCrossRefGoogle Scholar
  27. 27.
    Pritzker KP (1994) Animal models for osteoarthritis: processes, problems and prospects. Ann Rheum Dis 53(6):406–420PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U, Poole AR (2005) Role of interleukin-1 and tumor necrosis factor a in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum 52(1):128–135PubMedCrossRefGoogle Scholar
  29. 29.
    Pelletier JP, Martel-Pelletier J, Abramson SB (2001) Osteoarthritis, an inflammatory disease—potential implication for the selection of new therapeutic targets. Arthritis Rheum 44(6):1237–1247PubMedCrossRefGoogle Scholar
  30. 30.
    Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis—an introduction: cell biology of osteoarthritis. Arthritis Res 3(2):107–113PubMedCrossRefGoogle Scholar
  31. 31.
    Attur MG, Dave M, Cipolletta C, Kang P, Goldring MB, Patel IR, Abramson SB, Amin AR (2000) Reversal of autocrine and paracrine effects of interleukin 1 (IL-1) in human arthritis by type IIIL-1 decoy receptor—potential for pharmacological intervention. J Biol Chem 275(51):40307–40315PubMedCrossRefGoogle Scholar
  32. 32.
    Aigner T, Soeder S, Haag J (2006) Il-1 beta and BMPS—interactive players of cartilage matrix degradation and regeneration. Eur Cells Mater 12:49–56Google Scholar
  33. 33.
    Tetlow LC, Adlam DJ, Woolley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage—associations with degenerative changes. Arthritis Rheum 44(3):585–594PubMedCrossRefGoogle Scholar
  34. 34.
    Vuolteenaho K, Moilanen T, Knowles RG, Moilanen E (2007) The role of nitric oxide in osteoarthritis. Scand J Rheumatol 36(4):247–242U245Google Scholar
  35. 35.
    Richardson DW, Dodge GR (2000) Effects of interleukin-1 beta and tumor necrosis factor-alpha on expression of matrix-related genes by cultured equine articular chondrocytes. Am J Vet Res 61(6):624–630PubMedCrossRefGoogle Scholar
  36. 36.
    Pratta MA, Scherle PA, Yang GJ, Liu RQ, Newton RC (2003) Induction of aggrecanase 1 (ADAM-TS4) by interleukin-1 occurs through activation of constitutively produced protein. Arthritis Rheum 48(1):119–133PubMedCrossRefGoogle Scholar
  37. 37.
    Morgan MP, Whelan LC, Sallis JD, McCarthy CJ, Fitzgerald DJ, McCarthy GM (2004) Basic calcium phosphate crystal-induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1beta. Arthritis Rheum 50(5):1642–1649PubMedCrossRefGoogle Scholar
  38. 38.
    Mort J, Billington C (2001) Articular cartilage and changes in arthritis: matrix degradation. Arthritis Res 3(6):337–341PubMedCrossRefGoogle Scholar
  39. 39.
    Burrage PS, Brinckerhoff CE (2007) Molecular targets in osteoarthritis: metalloproteinases and their inhibitors. Curr Drug Targets 8(2):293–303PubMedCrossRefGoogle Scholar
  40. 40.
    Hyc A, Osiecka-Iwan A, Jozwiak J, Moskalewski S (2001) The morphology and selected biological properties of articular cartilage. Ortop Traumatol Rehabil 3(2):151–162PubMedGoogle Scholar
  41. 41.
    Benito MJ, Veale DJ, Fitzgerald O, van den Berg WB, Bresnihan B (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64(9):1263–1267PubMedCrossRefGoogle Scholar
  42. 42.
    Pelletier JP, McCollum R, Cloutier JM, Martel-Pelletier J (1995) Synthesis of metalloproteases and interleukin 6 (IL-6) in human osteoarthritic synovial membrane is an IL-1 mediated process. J Rheumatol Suppl 43:109–114PubMedGoogle Scholar
  43. 43.
    Grimaud E, Heymann D, Redini F (2002) Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 13(3):241–257PubMedCrossRefGoogle Scholar
  44. 44.
    Gaissmaier C, Koh JL, Weise K (2008) Growth and differentiation factors for cartilage healing and repair. Injury 39(Suppl 1):S88–S96PubMedCrossRefGoogle Scholar
  45. 45.
    Ellman MB, An HS, Muddasani P, Im HJ (2008) Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 420(1):82–89PubMedCrossRefGoogle Scholar
  46. 46.
    Bobacz K, Gruber R, Soleiman A, Graninger WB, Luyten F, Erlacher L (2002) Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy and osteoarthritic human articular chondrocytes and stimulate matrix synthesis. Osteoarthr Cartil 10(5):394–401PubMedCrossRefGoogle Scholar
  47. 47.
    Bobacz K, Gruber R, Soleiman A, Erlacher L, Smolen JS, Graninger WB (2003) Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis Rheum 48(9):2501–2508PubMedCrossRefGoogle Scholar
  48. 48.
    Chubinskaya S, Kuettner KE (2003) Regulation of osteogenic proteins by chondrocytes. Int J Biochem Cell Biol 35(9):1323–1340PubMedCrossRefGoogle Scholar
  49. 49.
    Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schunke M (2005) Pathomechanisms of cartilage destruction by mechanical injury. Annals of Anatomy Anatomischer Anzeiger 187(5–6):473–485CrossRefGoogle Scholar
  50. 50.
    Fukui N, Ikeda Y, Ohnuki T, Tanaka N, Hikita A, Mitomi H, Mori T, Juji T, Katsuragawa Y, Yamamoto S, Sawabe M, Yarnane S, Suzuki R, Sandell LJ, Ochi T (2008) Regional differences in chondrocyte metabolism in osteoarthritis. Arthritis Rheum 58(1):154–163PubMedCrossRefGoogle Scholar
  51. 51.
    Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, Zien A, Obermayr F, Zimmer R, Bartnik E (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54(11):3533–3544PubMedCrossRefGoogle Scholar
  52. 52.
    Little CB, Meeker CT, Golub SB, Lawlor KE, Farmer PJ, Smith SM, Fosang AJ (2008) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair (vol 117, pg 1627, 2007). J Clin Investig 118(11):3812Google Scholar
  53. 53.
    Fosang AJ, Little CB (2008) Drug insight: aggrecanases as therapeutic targets for osteoarthritis. Nat Clin Pract Rheumatol 4(8):420–427PubMedCrossRefGoogle Scholar
  54. 54.
    Murphy G, Nagase H (2008) Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4(3):128–135PubMedCrossRefGoogle Scholar
  55. 55.
    Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543PubMedCrossRefGoogle Scholar
  56. 56.
    Blain EJ, Gilbert SJ, Wardale RJ, Capper SJ, Mason DJ, Duance VC (2001) Up-regulation of matrix metalloproteinase expression and activation following cyclical compressive loading of articular cartilage in vitro. Arch Biochem Biophys 396(1):49–55PubMedCrossRefGoogle Scholar
  57. 57.
    Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52(8):2386–2395PubMedCrossRefGoogle Scholar
  58. 58.
    Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 84(2):678–685PubMedCrossRefGoogle Scholar
  59. 59.
    Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701PubMedCrossRefGoogle Scholar
  60. 60.
    Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494PubMedCrossRefGoogle Scholar
  61. 61.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases—structure, function, and biochemistry. Circ Res 92(8):827–839PubMedCrossRefGoogle Scholar
  62. 62.
    Knäuper V, L¢pez-Otin C, Smith B, Knight G, Murphy G (1996) Biochemical characterization of human collagenase-3. J Biol Chem 271(3):1544–1550PubMedCrossRefGoogle Scholar
  63. 63.
    Martel-Pelletier J, Pelletier JP (1996) Wanted—the collagenase responsible for the destruction of the collagen network in human cartilage! Br J Rheumatol 35(9):818–820Google Scholar
  64. 64.
    Miwa HE, Gerken TA, Hering TM (2006) Effects of covalently attached chondroitin sulfate on aggrecan cleavage by ADAMTS-4 and MMP-13. Matrix Biol 25(8):534–545PubMedCrossRefGoogle Scholar
  65. 65.
    Martel-Pelletier J, Welsch DJ, Pelletier JP (2001) Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol 15(5):805–829PubMedCrossRefGoogle Scholar
  66. 66.
    Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, VanWart H, Poole AR (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99(7):1534–1545PubMedCrossRefGoogle Scholar
  67. 67.
    Glasson SS (2007) In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets 8(2):367–376PubMedCrossRefGoogle Scholar
  68. 68.
    Ogata Y, Enghild JJ, Nagase H (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267(6):3581–3584PubMedGoogle Scholar
  69. 69.
    Kaushal GP, Shah SV (2000) The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J Clin Invest 105(10):1335–1337PubMedCrossRefGoogle Scholar
  70. 70.
    Hardingham TE, Fosang AJ, Dudhia J (1994) The structure, function and turnover of aggrecan, the large aggregating proteoglycan from cartilage. Eur J Clin Chem Clin Biochem 32(4):249–257PubMedGoogle Scholar
  71. 71.
    Watanabe H, Yamada Y, Kimata K (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem 124(4):687–693PubMedGoogle Scholar
  72. 72.
    Brooks PM (2006) The burden of musculoskeletal disease—a global perspective. Clin Rheumatol 25(6):778–781PubMedCrossRefGoogle Scholar
  73. 73.
    Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2(3):322–329PubMedCrossRefGoogle Scholar
  74. 74.
    Tortorella MD, Liu RQ, Burn T, Newton RC, Arner E (2002) Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol 21(6):499–511PubMedCrossRefGoogle Scholar
  75. 75.
    Bau B, Gebhard PM, Haag J, Knorr T, Bartnik E, Aigner T (2002) Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum 46(10):2648–2657PubMedCrossRefGoogle Scholar
  76. 76.
    Tortorella MD, Malfait AM, Deccico C, Arner E, Nagase H (2002) The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation (vol 9, pg 539, 2001). Osteoarthr Cartil 10(1):82Google Scholar
  77. 77.
    Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE (2006) The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 8(6)Google Scholar
  78. 78.
    Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434(7033):648–652PubMedCrossRefGoogle Scholar
  79. 79.
    Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434(7033):644–648PubMedCrossRefGoogle Scholar
  80. 80.
    Song RH, Tortorella MD, Malfait AM, Alston JT, Yang ZY, Arner EC, Griggs DW (2007) Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 56(2):575–585PubMedCrossRefGoogle Scholar
  81. 81.
    Fuerst M, Niggemeyer O, Lammers L, Schafer F, Lohmann C, Ruther W (2009) Articular cartilage mineralization in osteoarthritis of the hip. BMC Musculoskelet Disord 10:166PubMedCrossRefGoogle Scholar
  82. 82.
    Fuerst M, Bertrand J, Lammers L, Dreier R, Echtermeyer F, Nitschke Y, Rutsch F, Schafer FKW, Niggemeyer O, Steinhagen J, Lohmann CH, Pap T, Ruther W (2009) Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 60(9):2694–2703PubMedCrossRefGoogle Scholar
  83. 83.
    Terkeltaub RA (2001) Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 281(1):C1–C11PubMedGoogle Scholar
  84. 84.
    Saito T, Fukai A, Mabuchi A, Ikeda T, Yano F, Ohba S, Nishida N, Akune T, Yoshimura N, Nakagawa T, Nakamura K, Tokunaga K, Chung UI, Kawaguchi H (2010) Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med 16(6):678–686PubMedCrossRefGoogle Scholar
  85. 85.
    Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, Min BH, Chun JS (2010) Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 16(6):687–693PubMedCrossRefGoogle Scholar
  86. 86.
    Ea HK, Liote F (2004) Calcium pyrophosphate dihydrate and basic calcium phosphate crystal-induced arthropathies: update on pathogenesis, clinical features, and therapy. Curr Rheumatol Rep 6(3):221–227PubMedCrossRefGoogle Scholar
  87. 87.
    Ea HK, Liote F (2009) Advances in understanding calcium-containing crystal disease. Curr Opin Rheumatol 21(2):150–157PubMedCrossRefGoogle Scholar
  88. 88.
    Kirsch T, Nah HD, Shapiro IM, Pacifici M (1997) Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 137(5):1149–1160PubMedCrossRefGoogle Scholar
  89. 89.
    Wang W, Kirsch T (2006) Annexin V/beta5 integrin interactions regulate apoptosis of growth plate chondrocytes. J Biol Chem 281(41):30848–30856PubMedCrossRefGoogle Scholar
  90. 90.
    Arias JL, Nakamura O, Fernandez MS, Wu JJ, Knigge P, Eyre DR, Caplan AI (1997) Role of type X collagen on experimental mineralization of eggshell membranes. Connect Tissue Res 36(1):21–33PubMedCrossRefGoogle Scholar
  91. 91.
    Fleisch H (1981) Diphosphonates: history and mechanisms of action. Metab Bone Dis Relat Res 3(4–5):279–287PubMedCrossRefGoogle Scholar
  92. 92.
    Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289(5477):265–270PubMedCrossRefGoogle Scholar
  93. 93.
    Lotz M, Rosen F, McCabe G, Quach J, Blanco F, Dudler J, Solan J, Goding J, Seegmiller JE, Terkeltaub R (1995) Interleukin 1 beta suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPi-generating enzyme PC-1 in human chondrocytes. Proc Natl Acad Sci USA 92(22):10364–10368PubMedCrossRefGoogle Scholar
  94. 94.
    Rutsch F, Terkeltaub R (2003) Parallels between arterial and cartilage calcification: what understanding artery calcification can teach us about chondrocalcinosis. Curr Opin Rheumatol 15(3):302–310PubMedCrossRefGoogle Scholar
  95. 95.
    Kirsch T (2006) Determinants of pathological mineralization. Curr Opin Rheumatol 18(2):174–180PubMedCrossRefGoogle Scholar
  96. 96.
    Koshizuka Y, Ikegawa S, Sano M, Nakamura K, Nakamura Y (2001) Isolation of novel mouse genes associated with ectopic ossification by differential display method using ttw, a mouse model for ectopic ossification. Cytogenet Cell Genet 94(3–4):163–168PubMedCrossRefGoogle Scholar
  97. 97.
    Koshizuka Y, Kawaguchi H, Ogata N, Ikeda T, Mabuchi A, Seichi A, Nakamura Y, Nakamura K, Ikegawa S (2002) Nucleotide pyrophosphatase gene polymorphism associated with ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 17(1):138–144PubMedCrossRefGoogle Scholar
  98. 98.
    Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19(3):271–273PubMedCrossRefGoogle Scholar
  99. 99.
    Bai G, Howell DS, Howard GA, Roos BA, Cheung HS (2001) Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthr Cartil 9(5):416–422PubMedCrossRefGoogle Scholar
  100. 100.
    Molloy ES, Morgan MP, Doherty GA, McDonnell B, Hilliard M, O’Byrne J, Fitzgerald DJ, McCarthy GM (2008) Mechanism of basic calcium phosphate crystal-stimulated cyclo-oxygenase-1 up-regulation in osteoarthritic synovial fibroblasts. Rheumatology (Oxford, England) 47(7):965–971CrossRefGoogle Scholar
  101. 101.
    Bardin T, Varghese Cherian P, Schumacher HR (1984) Immunoglobulins on the surface of monosodium urate crystals: an immunoelectron microscopic study. J Rheumatol 11(3):339–341PubMedGoogle Scholar
  102. 102.
    Terkeltaub R, Tenner AJ, Kozin F, Ginsberg MH (1983) Plasma protein binding by monosodium urate crystals. Analysis by two-dimensional gel electrophoresis. Arthritis Rheum 26(6):775–783PubMedCrossRefGoogle Scholar
  103. 103.
    Altman RD, Hochberg MC, Moskowitz RW, Schnitzer TJ (2000) Recommendations for the medical management of osteoarthritis of the hip and knee—2000 update. Arthritis Rheum 43(9):1905–1915CrossRefGoogle Scholar
  104. 104.
    Clouet J, Vinatier C, Merceron C, Pot-vaucel M, Maugars Y, Weiss P, Grimandi G, Guicheux J (2009) From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today 14(19–20):913–925PubMedCrossRefGoogle Scholar
  105. 105.
    Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Joint Surg Br 87B(4):445–449Google Scholar
  106. 106.
    Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234PubMedCrossRefGoogle Scholar
  107. 107.
    Hunziker EB (1999) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthr Cartil 7(1):15–28PubMedCrossRefGoogle Scholar
  108. 108.
    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463PubMedCrossRefGoogle Scholar
  109. 109.
    Messner K, Maletius W (1996) The long-term prognosis for severe damage to weight-bearing cartilage in the knee—a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthopaedica Scandinavica 67(2):165–168PubMedCrossRefGoogle Scholar
  110. 110.
    Shelbourne KD, Jari S, Gray T (2003) Outcome of untreated traumatic articular cartilage defects of the knee—a natural history study. J Bone Joint Surg Am 85A:8–16Google Scholar
  111. 111.
    Breinan HA, Hsu HP, Spector M (2001) Chondral defects in animal models—effects of selected repair procedures in canines. Clin Orthop Relat Res 391:S219–S230PubMedCrossRefGoogle Scholar
  112. 112.
    Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular-cartilage. J Bone Joint Surg Am 75A(4):532–553Google Scholar
  113. 113.
    De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942PubMedCrossRefGoogle Scholar
  114. 114.
    Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJR, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117(6):889–897PubMedCrossRefGoogle Scholar
  115. 115.
    Mankin HJ (1974) Reaction of articular-cartilage to injury and osteoarthritis.1. N Engl J Med 291(24):1285–1292PubMedCrossRefGoogle Scholar
  116. 116.
    Mankin HJ (1982) The response of articular-cartilage to mechanical injury. J Bone Joint Surg Am 64(3):460–466PubMedGoogle Scholar
  117. 117.
    Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model—a preliminary study. J Bone Joint Surg Am 83A(1):53–64Google Scholar
  118. 118.
    Dell’Accio F, De Bari C, Eltawil NA, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening. Arthritis Rheum 58(5):1410–1421PubMedCrossRefGoogle Scholar
  119. 119.
    Onyekwelu I, Goldring MB, Hidaka C (2009) Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem 107(3):383–392PubMedCrossRefGoogle Scholar
  120. 120.
    Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27(5):307–314PubMedCrossRefGoogle Scholar
  121. 121.
    Kitisin K, Saha T, Blake T, Golestaneh N, Deng M, Kim C, Tang Y, Shetty K, Mishra B, Mishra L (2007) TGF-beta signaling in development. Sci Signal 2007(399): cm1Google Scholar
  122. 122.
    de Caestecker M (2004) The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15(1):1–11PubMedCrossRefGoogle Scholar
  123. 123.
    Roberts AB (1999) TGF-[beta] signaling from receptors to the nucleus. Microbes Infect 1(15):1265–1273PubMedCrossRefGoogle Scholar
  124. 124.
    Critchlow MA, Bland YS, Ashhurst DE (1995) The effect of exogenous transforming growth factor-beta 2 on healing fractures in the rabbit. Bone 16(5):521–527PubMedCrossRefGoogle Scholar
  125. 125.
    Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB (1998) Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest 78(2):133–142PubMedGoogle Scholar
  126. 126.
    Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB (2002) Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169(1):507–514PubMedGoogle Scholar
  127. 127.
    Palmer GD, Steinert A, Pascher A, Gouze E, Gouze JN, Betz O, Johnstone B, Evans CH, Ghivizzani SC (2005) Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther 12(2):219–228PubMedCrossRefGoogle Scholar
  128. 128.
    Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, Richards CD, van den Berg WB (2001) Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondrosteophyte formation. Osteoarthr Cartil 9(2):128–136PubMedCrossRefGoogle Scholar
  129. 129.
    van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB (1994) Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 71(2):279–290PubMedGoogle Scholar
  130. 130.
    Miljkovic ND, Cooper GM, Marra KG (2008) Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthr Cartil 16(10):1121–1130PubMedCrossRefGoogle Scholar
  131. 131.
    Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005) Comparison of effect of BMP-2,-4, and-6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320(2):269–276PubMedCrossRefGoogle Scholar
  132. 132.
    Grunder T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, Aicher WK (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr Cartil 12(7):559–567PubMedCrossRefGoogle Scholar
  133. 133.
    Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M (2006) Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthr Cartil 14(11):1126–1135PubMedCrossRefGoogle Scholar
  134. 134.
    Hayashi M, Muneta T, Ju YJ, Mochizuki T, Sekiya I (2008) Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther 10(5)Google Scholar
  135. 135.
    Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR (2009) Molecular pathology of the fibroblast growth factor family. Hum Mutat 30(9):1245–1255PubMedCrossRefGoogle Scholar
  136. 136.
    Martin GR (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev 12(11):1571–1586PubMedCrossRefGoogle Scholar
  137. 137.
    Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97(1):33–44PubMedCrossRefGoogle Scholar
  138. 138.
    Horton WA, Degnin CR (2009) FGFs in endochondral skeletal development. Trends Endocrinol Metab 20(7):341–348PubMedCrossRefGoogle Scholar
  139. 139.
    Ishii I, Mizuta H, Sei A, Hirose J, Kudo S, Hiraki Y (2007) Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br 89B(5):693–700Google Scholar
  140. 140.
    Moore EE, Bendele AM, Thompson DL, Littau A, Waggie KS, Reardon B, Ellsworth JL (2005) Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthr Cartil 13(7):623–631PubMedCrossRefGoogle Scholar
  141. 141.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480PubMedCrossRefGoogle Scholar
  142. 142.
    Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116(Pt 13):2627–2634PubMedCrossRefGoogle Scholar
  143. 143.
    Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20(11):1394–1404PubMedCrossRefGoogle Scholar
  144. 144.
    Montcouquiol M, Crenshaw EB, Kelley III MW (2006) Noncanonical Wnt signaling and neural polarity. Annu Rev Neurosci 29:363–386PubMedCrossRefGoogle Scholar
  145. 145.
    Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127(14):3141–3159PubMedGoogle Scholar
  146. 146.
    Kawakami Y, Wada N, Nishimatsu SI, Ishikawa T, Noji S, Nohno T (1999) Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev Growth Differ 41(1):29–40PubMedCrossRefGoogle Scholar
  147. 147.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163PubMedCrossRefGoogle Scholar
  148. 148.
    Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southam L, Ferreira A, Ciesielski C, Carson DA, Corr M (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci USA 101(26):9757–9762PubMedCrossRefGoogle Scholar
  149. 149.
    Andrade AC, Nilsson O, Barnes KM, Baron J (2007) Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 40(5):1361–1369PubMedCrossRefGoogle Scholar
  150. 150.
    Yates KE, Shortkroff S, Reish RG (2005) Wnt influence on chondrocyte differentiation and cartilage function. DNA Cell Biol 24(7):446–457PubMedCrossRefGoogle Scholar
  151. 151.
    Day TF, Guo XZ, Garrett-Beal L, Yang YZ (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8(5):739–750PubMedCrossRefGoogle Scholar
  152. 152.
    Chen M, Zhu M, Awad H, Li TF, Sheu TJ, Boyce BF, Chen D, O’Keefe RJ (2008) Inhibition of beta-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 121(9):1455–1465PubMedCrossRefGoogle Scholar
  153. 153.
    Chen Y, Whetstone HC, Youn A, Nadesan P, Chow ECY, Lin AC, Alman BA (2007) beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 282(1):526–533PubMedCrossRefGoogle Scholar
  154. 154.
    Koutroumpas AC, Alexiou IS, Vlychou M, Sakkas LI (2010) Comparison between clinical and ultrasonographic assessment in patients with erosive osteoarthritis of the hands. Clin Rheumatol 29(5):511–516PubMedCrossRefGoogle Scholar
  155. 155.
    Vlychou M, Koutroumpas A, Malizos K, Sakkas LI (2009) Ultrasonographic evidence of inflammation is frequent in hands of patients with erosive osteoarthritis. Osteoarthr Cartil 17(10):1283–1287PubMedCrossRefGoogle Scholar
  156. 156.
    Mertens M, Singh JA (2009) Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol 36(6):1118–1125PubMedCrossRefGoogle Scholar
  157. 157.
    Taylor PC, Feldmann M (2009) Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 5(10):578–582PubMedCrossRefGoogle Scholar
  158. 158.
    Caron JP, Fernandes JC, MartellPelletier J, Tardif G, Mineau F, Geng CS, Pelletier JP (1996) Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis—suppression of collagenase-1 expression. Arthritis Rheum 39(9):1535–1544PubMedCrossRefGoogle Scholar
  159. 159.
    Fernandes J, Tardif G, Martel-Pelletier J, Lascau-Coman V, Dupuis M, Moldovan F, Sheppard M, Krishnan BR, Pelletier JP (1999) In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints—prevention of osteoarthritis progression. Am J Pathol 154(4):1159–1169PubMedGoogle Scholar
  160. 160.
    Frisbie DD, Ghivizzani SC, Robbins PD, Evans CH, McIlwraith CW (2002) Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther 9(1):12–20PubMedCrossRefGoogle Scholar
  161. 161.
    Pelletier JP, Caron JP, Evans C, Robbins PD, Georgescu HI, Jovanovic D, Fernandes JC, Martel-Pelletier J (1997) In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 40(6):1012–1019PubMedCrossRefGoogle Scholar
  162. 162.
    Zhang XL, Mao ZB, Yu CL (2004) Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res 22(4):742–750PubMedCrossRefGoogle Scholar
  163. 163.
    Chevalier X, Giraudeau B, Conrozier T, Marliere J, Kiefer P, Goupille P (2005) Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J Rheumatol 32(7):1317–1323PubMedGoogle Scholar
  164. 164.
    Chevalier X, Goupille P, Beaulieu AD, Burch FX, Bensen WG, Conrozier T, Loeuille D, Kivitz AJ, Silver D, Appleton BE (2009) Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum Arthritis Care Res 61(3):344–352CrossRefGoogle Scholar
  165. 165.
    Chevalier X, Goupille P, Beaulieu AD, Burch FX, Conrozier T, Loeuille D, Kivitz AJ, Silver D, Kiefer P, Zhou L, Bevirt T, Appleton B (2005) Results from a double-blind, placebo-controlled, multicenter trial of a single intra-articular injection of anakinra (kineret (R)) in patients with osteoarthritis of the knee. Arthritis and Rheumatism 52(9):S507Google Scholar
  166. 166.
    Clements KM, Price JS, Chambers MG, Visco DM, Poole AR, Mason RM (2003) Gene deletion of either interleukin-1 beta, interleukin-1 beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum 48(12):3452–3463PubMedCrossRefGoogle Scholar
  167. 167.
    Fan Z, Soder S, Ehler S, Fundel K, Aigner T (2007) Activation of interleukin-1 signaling cascades in normal and osteoarthritic articular cartilage. Am J Pathol 171(3):938–946PubMedCrossRefGoogle Scholar
  168. 168.
    Magnano MD, Chakravarty EF, Broudy C, Chung L, Kelman A, Hillygus J, Genovese MC (2007) A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands. J Rheumatol 34(6):1323–1327PubMedGoogle Scholar
  169. 169.
    Krzeski P, Buckland-Wright C, Balint G, Cline GA, Stoner K, Lyon R, Beary J, Aronstein WS, Spector TD (2007) Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther 9(5)Google Scholar
  170. 170.
    Bissett D, O’Byrne KJ, von Pawel J, Gatzemeier U, Price A, Nicolson M, Mercier R, Mazabel E, Penning C, Zhang MH, Collier MA, Shepherd FA (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 23(4):842–849PubMedCrossRefGoogle Scholar
  171. 171.
    Hudson MP, Armstrong PW, Ruzyllo W, Brum J, Cusmano L, Krzeski P, Lyon R, Quinones M, Theroux P, Sydlowski D, Kim HE, Garcia MJ, Jaber WA, Weaver WD (2006) Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol 48(1):15–20PubMedCrossRefGoogle Scholar
  172. 172.
    King J, Zhao J, Clingan P, Morris D (2003) Randomised double-blind placebo-control study of adjuvant treatment with the metalloproteinase inhibitor, marimastat in patients with inoperable colorectal hepatic metastases: significant survival advantage in patients with musculoskeletal side-effects. Anticancer Res 23(1B):639–645PubMedGoogle Scholar
  173. 173.
    Leff RL, Elias I, Ionescu M, Reiner A, Poole AR (2003) Molecular changes in human osteoarthritic cartilage after 3 weeks of oral administration of BAY 12–9566, a matrix metalloproteinase inhibitor. J Rheumatol 30(3):544–549PubMedGoogle Scholar
  174. 174.
    Miller KD, Saphner TJ, Waterhouse DM, Chen TT, Rush-Taylor A, Sparano JA, Wolff AC, Cobleigh MA, Galbraith S, Sledge GW (2004) A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin Cancer Res 10(6):1971–1975PubMedCrossRefGoogle Scholar
  175. 175.
    Tortorella MD, Arner EC, Hills R, Easton A, Korte-Sarfaty J, Fok K, Wittwer AJ, Liu RQ, Malfait AM (2004) Alpha(2)-Macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. J Biol Chem 279(17):17554–17561PubMedCrossRefGoogle Scholar
  176. 176.
    Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G, Pap T (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15(9):1072–1076Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Daniel Umlauf
    • 1
  • Svetlana Frank
    • 1
  • Thomas Pap
    • 1
  • Jessica Bertrand
    • 1
  1. 1.Institute of Experimental Musculoskeletal Medicine IEMM, University Hospital MuensterMuensterGermany

Personalised recommendations