Skip to main content
Log in

Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy

  • Multi-Author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

O6-methylguanine-DNA methyltransferase (MGMT) repairs the cancer chemotherapy-relevant DNA adducts, O6-methylguanine and O6-chloroethylguanine, induced by methylating and chloroethylating anticancer drugs, respectively. These adducts are cytotoxic, and given the overwhelming evidence that MGMT is a key factor in resistance, strategies for inactivating MGMT have been pursued. A number of drugs have been shown to inactivate MGMT in cells, human tumour models and cancer patients, and O6-benzylguanine and O6-[4-bromothenyl]guanine have been used in clinical trials. While these agents show no side effects per se, they also inactivate MGMT in normal tissues and hence exacerbate the toxic side effects of the alkylating drugs, requiring dose reduction. This might explain why, in any of the reported trials, the outcome has not been improved by their inclusion. It is, however, anticipated that, with the availability of tumour targeting strategies and hematopoetic stem cell protection, MGMT inactivators hold promise for enhancing the effectiveness of alkylating agent chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kleihues P, Magee PN (1973) Alkylation of rat brain nucleic acids by N-methyl-N-nitrosourea and methyl methanesulphonate. J Neurochem 20:595–606

    PubMed  Google Scholar 

  2. Skipper HE, Schabel FM Jr, Trader MW, Thomson JR (1961) Experimental evaluation of potential anticancer agents. VI. Anatomical distribution of leukemic cells and failure of chemotherapy. Cancer Res 21:1154–1164

    PubMed  Google Scholar 

  3. Ludlum DB (1990) DNA alkylation by the haloethylnitrosoureas: nature of modifications produced and their enzymatic repair or removal. Mutat Res 233:117–126

    PubMed  Google Scholar 

  4. Goldstein M, Roos WP, Kaina B (2008) Apoptotic death induced by the cyclophosphamide analogue mafosfamide in human lymphoblastoid cells: contribution of DNA replication, transcription inhibition and Chk/p53 signaling. Toxicol Appl Pharmacol 229:20–32

    PubMed  Google Scholar 

  5. Preuss I, Thust R, Kaina B (1996) Protective effect of O6-methylguanine-DNA methyltransferase (MGMT) on the cytotoxic and recombinogenic activity of different antineoplastic drugs. Int J Cancer 65:506–512

    PubMed  Google Scholar 

  6. Friedman HS, Pegg AE, Johnson SP, Loktionova NA, Dolan ME, Modrich P, Moschel RC, Struck R, Brent TP, Ludeman S, Bullock N, Kilborn C, Keir S, Dong Q, Bigner DD, Colvin OM (1999) Modulation of cyclophosphamide activity by O6-alkylguanine-DNA alkyltransferase. Cancer Chemother Pharmacol 43:80–85

    PubMed  Google Scholar 

  7. Dolan ME, Mitchell RB, Mummert C, Moschel RC, Pegg AE (1991) Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res 51:3367–3372

    PubMed  Google Scholar 

  8. Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6:1079–1099

    Google Scholar 

  9. Naumann SC, Roos WP, Jost E, Belohlavek C, Lennerz V, Schmidt CW, Christmann M, Kaina B (2009) Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53. Br J Cancer 100:322–333

    PubMed  Google Scholar 

  10. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26:186–197

    PubMed  Google Scholar 

  11. Quiros S, Roos WP, Kaina B (2010) Processing of O6-methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle 9:168–178

    PubMed  Google Scholar 

  12. Fritz G, Tano K, Mitra S, Kaina B (1991) Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments. Mol Cell Biol 11:4660–4668

    PubMed  Google Scholar 

  13. Srivenugopal KS, Mullapudi SR, Shou J, Hazra TK, Ali-Osman F (2000) Protein phosphorylation is a regulatory mechanism for O6-alkylguanine-DNA alkyltransferase in human brain tumor cells. Cancer Res 60:282–287

    PubMed  Google Scholar 

  14. Mullapudi SR, Ali-Osman F, Shou J, Srivenugopal KS (2000) DNA repair protein O6-alkylguanine-DNA alkyltransferase is phosphorylated by two distinct and novel protein kinases in human brain tumour cells. Biochem J 351(Pt 2):393–402

    PubMed  Google Scholar 

  15. Hazra TK, Roy R, Biswas T, Grabowski DT, Pegg AE, Mitra S (1997) Specific recognition of O6-methylguanine in DNA by active site mutants of human O6-methylguanine-DNA methyltransferase. Biochemistry 36:5769–5776

    PubMed  Google Scholar 

  16. Pegg AE, Dolan ME, Moschel RC (1995) Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol 51:167–223

    PubMed  Google Scholar 

  17. Kaina B, Fritz G, Mitra S, Coquerelle T (1991) Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis 12:1857–1867

    PubMed  Google Scholar 

  18. Srivenugopal KS, Yuan XH, Friedman HS, Ali-Osman F (1996) Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochemistry 35:1328–1334

    PubMed  Google Scholar 

  19. Kleihues P, Margison GP (1976) Exhaustion and recovery of repair excision of O6-methylguanine from rat liver DNA. Nature 259:153–155

    PubMed  Google Scholar 

  20. Lips J, Kaina B (2001) Repair of O(6)-methylguanine is not affected by thymine base pairing and the presence of MMR proteins. Mutat Res 487:59–66

    PubMed  Google Scholar 

  21. Gonzaga PE, Potter PM, Niu TQ, Yu D, Ludlum DB, Rafferty JA, Margison GP, Brent TP (1992) Identification of the cross-link between human O6-methylguanine-DNA methyltransferase and chloroethylnitrosourea-treated DNA. Cancer Res 52:6052–6058

    PubMed  Google Scholar 

  22. Hengstler JG, Tanner B, Moller L, Meinert R, Kaina B (1999) Activity of O(6)-methylguanine-DNA methyltransferase in relation to p53 status and therapeutic response in ovarian cancer. Int J Cancer 84:388–395

    PubMed  Google Scholar 

  23. Teo AK, Oh HK, Ali RB, Li BF (2001) The modified human DNA repair enzyme O(6)-methylguanine-DNA methyltransferase is a negative regulator of estrogen receptor-mediated transcription upon alkylation DNA damage. Mol Cell Biol 21:7105–7114

    PubMed  Google Scholar 

  24. Gerson SL, Phillips W, Kastan M, Dumenco LL, Donovan C (1996) Human CD34 + hematopoietic progenitors have low, cytokine-unresponsive O6-alkylguanine-DNA alkyltransferase and are sensitive to O6-benzylguanine plus BCNU. Blood 88:1649–1655

    PubMed  Google Scholar 

  25. Sorg UR, Kleff V, Fanaei S, Schumann A, Moellmann M, Opalka B, Thomale J, Moritz T (2007) O6-methylguanine-DNA-methyltransferase (MGMT) gene therapy targeting haematopoietic stem cells: studies addressing safety issues. DNA Repair (Amst) 6:1197–1209

    Google Scholar 

  26. Citron M, White A, Decker R, Wasserman P, Li B, Randall T, Guerra D, Belanich M, Yarosh D (1995) O6-methylguanine-DNA methyltransferase in human brain tumors detected by activity assay and monoclonal antibodies. Oncol Res 7:49–55

    PubMed  Google Scholar 

  27. Preuss I, Haas S, Eichhorn U, Eberhagen I, Kaufmann M, Beck T, Eibl RH, Dall P, Bauknecht T, Hengstler J, Wittig BM, Dippold W, Kaina B (1996) Activity of the DNA repair protein O6-methylguanine-DNA methyltransferase in human tumor and corresponding normal tissue. Cancer Detect Prev 20:130–136

    PubMed  Google Scholar 

  28. Margison GP, Povey AC, Kaina B, Santibanez Koref MF (2003) Variability and regulation of O(6)-alkylguanine-DNA alkyltransferase. Carcinogenesis 24:625–635

    PubMed  Google Scholar 

  29. Wiewrodt D, Nagel G, Dreimuller N, Hundsberger T, Perneczky A, Kaina B (2008) MGMT in primary and recurrent human glioblastomas after radiation and chemotherapy and comparison with p53 status and clinical outcome. Int J Cancer 122:1391–1399

    PubMed  Google Scholar 

  30. Janssen K, Eichhorn-Grombacher U, Schlink K, Nitzsche S, Oesch F, Kaina B (2001) Long-time expression of DNA repair enzymes MGMT and APE in human peripheral blood mononuclear cells. Arch Toxicol 75:306–312

    PubMed  Google Scholar 

  31. Egyhazi S, Margison GP, Hansson J, Ringborg U (1997) Immunohistochemical examination of the expression of O6-methylguanine-DNA methyltransferase in human melanoma metastases. Eur J Cancer 33:129–134

    PubMed  Google Scholar 

  32. Rietschel P, Wolchok JD, Krown S, Gerst S, Jungbluth AA, Busam K, Smith K, Orlow I, Panageas K, Chapman PB (2008) Phase II study of extended-dose temozolomide in patients with melanoma. J Clin Oncol 26:2299–2304

    PubMed  Google Scholar 

  33. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    PubMed  Google Scholar 

  34. Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10:1871–1874

    PubMed  Google Scholar 

  35. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    PubMed  Google Scholar 

  36. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    PubMed  Google Scholar 

  37. Christmann M, Nagel G, Horn S, Krahn U, Wiewrodt D, Sommer C, Kaina B (2010) MGMT activity, promoter methylation and immunohistochemistry of pre-treatment and recurrent malignant gliomas: a comparative study on astrocytoma and glioblastoma. Int J Cancer (Epub ahead of print)

  38. Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME (2009) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51

    PubMed  Google Scholar 

  39. Spiegl-Kreinecker S, Pirker C, Filipits M, Lotsch D, Buchroithner J, Pichler J, Silye R, Weis S, Micksche M, Fischer J, Berger W (2010) O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients. Neuro Oncol 12:28–36

    PubMed  Google Scholar 

  40. Augustine CK, Yoo JS, Potti A, Yoshimoto Y, Zipfel PA, Friedman HS, Nevins JR, Ali-Osman F, Tyler DS (2009) Genomic and molecular profiling predicts response to temozolomide in melanoma. Clin Cancer Res 15:502–510

    PubMed  Google Scholar 

  41. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    PubMed  Google Scholar 

  42. Sabharwal A, Waters R, Danson S, Clamp A, Lorigan P, Thatcher N, Margison GP, Middleton MR (2009) Predicting the myelotoxicity of chemotherapy: the use of pretreatment O6-methylguanine-DNA methyltransferase determination in peripheral blood mononuclear cells. Melanoma Res (Epub ahead of print)

  43. Zlotogorski C, Erickson LC (1983) Pretreatment of normal human fibroblasts and human colon carcinoma cells with MNNG allows chloroethylnitrosourea to produce DNA interstrand crosslinks not observed in cells treated with chloroethylnitrosourea alone. Carcinogenesis 4:759–763

    PubMed  Google Scholar 

  44. Zlotogorski C, Erickson LC (1984) Pretreatment of human colon tumor cells with DNA methylating agents inhibits their ability to repair chloroethyl monoadducts. Carcinogenesis 5:83–87

    PubMed  Google Scholar 

  45. Gerson SL, Berger NA, Arce C, Petzold SJ, Willson JK (1992) Modulation of nitrosourea resistance in human colon cancer by O6-methylguanine. Biochem Pharmacol 43:1101–1107

    PubMed  Google Scholar 

  46. Dolan ME, Morimoto K, Pegg AE (1985) Reduction of O6-alkylguanine-DNA alkyltransferase activity in HeLa cells treated with O6-alkylguanines. Cancer Res 45:6413–6417

    PubMed  Google Scholar 

  47. Yarosh DB, Hurst-Calderone S, Babich MA, Day RS 3rd (1986) Inactivation of O6-methylguanine-DNA methyltransferase and sensitization of human tumor cells to killing by chloroethylnitrosourea by O6-methylguanine as a free base. Cancer Res 46:1663–1668

    PubMed  Google Scholar 

  48. Dolan ME, Larkin GL, English HF, Pegg AE (1989) Depletion of O6-alkylguanine-DNA alkyltransferase activity in mammalian tissues and human tumor xenografts in nude mice by treatment with O6-methylguanine. Cancer Chemother Pharmacol 25:103–108

    PubMed  Google Scholar 

  49. Dolan ME, Moschel RC, Pegg AE (1990) Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA 87:5368–5372

    PubMed  Google Scholar 

  50. Moschel RC, McDougall MG, Dolan ME, Stine L, Pegg AE (1992) Structural features of substituted purine derivatives compatible with depletion of human O6-alkylguanine-DNA alkyltransferase. J Med Chem 35:4486–4491

    PubMed  Google Scholar 

  51. Moore MH, Gulbis JM, Dodson EJ, Demple B, Moody PC (1994) Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J 13:1495–1501

    PubMed  Google Scholar 

  52. Shibata T, Glynn N, McMurry TB, McElhinney RS, Margison GP, Williams DM (2006) Novel synthesis of O6-alkylguanine containing oligodeoxyribonucleotides as substrates for the human DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT). Nucleic Acids Res 34:1884–1891

    PubMed  Google Scholar 

  53. Kaina B, Muhlhausen U, Piee-Staffa A, Christmann M, Garcia Boy R, Rosch F, Schirrmacher R (2004) Inhibition of O6-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors: comparison with nonconjugated inhibitors and effect on fotemustine and temozolomide-induced cell death. J Pharmacol Exp Ther 311:585–593

    PubMed  Google Scholar 

  54. Roy SK, Korzekwa KR, Gonzalez FJ, Moschel RC, Dolan ME (1995) Human liver oxidative metabolism of O6-benzylguanine. Biochem Pharmacol 50:1385–1389

    PubMed  Google Scholar 

  55. Long L, Moschel RC, Dolan ME (2001) Debenzylation of O(6)-benzyl-8-oxoguanine in human liver: implications for O(6)-benzylguanine metabolism. Biochem Pharmacol 61:721–726

    PubMed  Google Scholar 

  56. Roy SK, Gupta E, Dolan ME (1995) Pharmacokinetics of O6-benzylguanine in rats and its metabolism by rat liver microsomes. Drug Metab Dispos 23:1394–1399

    PubMed  Google Scholar 

  57. Berg SL, Gerson SL, Godwin K, Cole DE, Liu L, Balis FM (1995) Plasma and cerebrospinal fluid pharmacokinetics of O6-benzylguanine and time course of peripheral blood mononuclear cell O6-methylguanine-DNA methyltransferase inhibition in the nonhuman primate. Cancer Res 55:4606–4610

    PubMed  Google Scholar 

  58. Berg SL, Murry DJ, McCully CL, Godwin K, Balis FM (1998) Pharmacokinetics of O6-benzylguanine and its active metabolite 8-oxo-O6-benzylguanine in plasma and cerebrospinal fluid after intrathecal administration of O6-benzylguanine in the nonhuman primate. Clin Cancer Res 4:2891–2894

    PubMed  Google Scholar 

  59. Dolan ME, Roy SK, Fasanmade AA, Paras PR, Schilsky RL, Ratain MJ (1998) O6-benzylguanine in humans: metabolic, pharmacokinetic, and pharmacodynamic findings. J Clin Oncol 16:1803–1810

    PubMed  Google Scholar 

  60. Neville K, Blaney S, Bernstein M, Thompson P, Adams D, Aleksic A, Berg S (2004) Pharmacokinetics of O(6)-benzylguanine in pediatric patients with central nervous system tumors: a pediatric oncology group study. Clin Cancer Res 10:5072–5075

    PubMed  Google Scholar 

  61. Long L, Berg SL, Roy SK, McCully CL, Song-Yoo HW, Moschel RC, Balis FM, Dolan ME (2000) Plasma and cerebrospinal fluid pharmacokinetics of O6-benzylguanine and analogues in nonhuman primates. Clin Cancer Res 6:3662–3669

    PubMed  Google Scholar 

  62. Ewesuedo RB, Wilson LR, Friedman HS, Moschel RC, Dolan ME (2001) Inactivation of O6-alkylguanine-DNA alkyltransferase by 8-substituted O6-benzylguanine analogs in mice. Cancer Chemother Pharmacol 47:63–69

    PubMed  Google Scholar 

  63. Ranson M, Middleton MR, Bridgewater J, Lee SM, Dawson M, Jowle D, Halbert G, Waller S, McGrath H, Gumbrell L, McElhinney RS, Donnelly D, McMurry TB, Margison GP (2006) Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 12:1577–1584

    PubMed  Google Scholar 

  64. Friedman HS, Dolan ME, Moschel RC, Pegg AE, Felker GM, Rich J, Bigner DD, Schold SC Jr (1992) Enhancement of nitrosourea activity in medulloblastoma and glioblastoma multiforme. J Natl Cancer Inst 84:1926–1931

    PubMed  Google Scholar 

  65. Wedge SR, Porteous JK, Newlands ES (1997) Effect of single and multiple administration of an O6-benzylguanine/temozolomide combination: an evaluation in a human melanoma xenograft model. Cancer Chemother Pharmacol 40:266–272

    PubMed  Google Scholar 

  66. Wan Y, Wu D, Gao H, Lu H (2000) Potentiation of BCNU anticancer activity by O6-benzylguanine: a study in vitro and in vivo. J Environ Pathol Toxicol Oncol 19:69–75

    PubMed  Google Scholar 

  67. Marathi UK, Dolan ME, Erickson LC (1994) Anti-neoplastic activity of sequenced administration of O6-benzylguanine, streptozotocin, and 1,3-bis(2-chloroethyl)-1-nitrosourea in vitro and in vivo. Biochem Pharmacol 48:2127–2134

    PubMed  Google Scholar 

  68. Kreklau EL, Kurpad C, Williams DA, Erickson LC (1999) Prolonged inhibition of O(6)-methylguanine DNA methyltransferase in human tumor cells by O(6)-benzylguanine in vitro and in vivo. J Pharmacol Exp Ther 291:1269–1275

    PubMed  Google Scholar 

  69. Felker GM, Friedman HS, Dolan ME, Moschel RC, Schold C (1993) Treatment of subcutaneous and intracranial brain tumor xenografts with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemother Pharmacol 32:471–476

    PubMed  Google Scholar 

  70. Kokkinakis DM, Ahmed MM, Chendil D, Moschel RC, Pegg AE (2003) Sensitization of pancreatic tumor xenografts to carmustine and temozolomide by inactivation of their O6-methylguanine-DNA methyltransferase with O6-benzylguanine or O6-benzyl-2′-deoxyguanosine. Clin Cancer Res 9:3801–3807

    PubMed  Google Scholar 

  71. Friedman HS, Keir S, Pegg AE, Houghton PJ, Colvin OM, Moschel RC, Bigner DD, Dolan ME (2002) O6-benzylguanine-mediated enhancement of chemotherapy. Mol Cancer Ther 1:943–948

    PubMed  Google Scholar 

  72. Wagner LM, McLendon RE, Yoon KJ, Weiss BD, Billups CA, Danks MK (2007) Targeting methylguanine-DNA methyltransferase in the treatment of neuroblastoma. Clin Cancer Res 13:5418–5425

    PubMed  Google Scholar 

  73. Rhines LD, Sampath P, Dolan ME, Tyler BM, Brem H, Weingart J (2000) O6-benzylguanine potentiates the antitumor effect of locally delivered carmustine against an intracranial rat glioma. Cancer Res 60:6307–6310

    PubMed  Google Scholar 

  74. Schold SC Jr, Kokkinakis DM, Rudy JL, Moschel RC, Pegg AE (1996) Treatment of human brain tumor xenografts with O6-benzyl-2′-deoxyguanosine and BCNU. Cancer Res 56:2076–2081

    PubMed  Google Scholar 

  75. Wedge SR, Newlands ES (1996) O6-benzylguanine enhances the sensitivity of a glioma xenograft with low O6-alkylguanine-DNA alkyltransferase activity to temozolomide and BCNU. Br J Cancer 73:1049–1052

    PubMed  Google Scholar 

  76. Keir ST, Dolan ME, Pegg AE, Lawless A, Moschel RC, Bigner DD, Friedman HS (2000) O6-benzylguanine-mediated enhancement of nitrosourea activity in Mer—central nervous system tumor xenografts—implications for clinical trials. Cancer Chemother Pharmacol 45:437–440

    PubMed  Google Scholar 

  77. Kurpad SN, Dolan ME, McLendon RE, Archer GE, Moschel RC, Pegg AE, Bigner DD, Friedman HS (1997) Intraarterial O6-benzylguanine enables the specific therapy of nitrosourea-resistant intracranial human glioma xenografts in athymic rats with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemother Pharmacol 39:307–316

    PubMed  Google Scholar 

  78. Ueno T, Ko SH, Grubbs E, Yoshimoto Y, Augustine C, Abdel-Wahab Z, Cheng TY, Abdel-Wahab OI, Pruitt SK, Friedman HS, Tyler DS (2006) Modulation of chemotherapy resistance in regional therapy: a novel therapeutic approach to advanced extremity melanoma using intra-arterial temozolomide in combination with systemic O6-benzylguanine. Mol Cancer Ther 5:732–738

    PubMed  Google Scholar 

  79. Kokkinakis DM, Moschel RC, Pegg AE, Schold SC (2000) Potentiation of BCNU antitumor efficacy by 9-substituted O6-benzylguanines. Effect of metabolism. Cancer Chemother Pharmacol 45:69–77

    PubMed  Google Scholar 

  80. Middleton MR, Kelly J, Thatcher N, Donnelly DJ, McElhinney RS, McMurry TB, McCormick JE, Margison GP (2000) O(6)-(4-bromothenyl)guanine improves the therapeutic index of temozolomide against A375M melanoma xenografts. Int J Cancer 85:248–252

    PubMed  Google Scholar 

  81. Middleton MR, Kelly J, Goodger S, Thatcher N, Margison GP (2000) Four-hourly scheduling of temozolomide improves tumour growth delay but not therapeutic index in A375M melanoma xenografts. Cancer Chemother Pharmacol 45:15–20

    PubMed  Google Scholar 

  82. Middleton MR, Thatcher N, McMurry TB, McElhinney RS, Donnelly DJ, Margison GP (2002) Effect of O6-(4-bromothenyl)guanine on different temozolomide schedules in a human melanoma xenograft model. Int J Cancer 100:615–617

    PubMed  Google Scholar 

  83. Clemons M, Kelly J, Watson AJ, Howell A, McElhinney RS, McMurry TB, Margison GP (2005) O6-(4-bromothenyl)guanine reverses temozolomide resistance in human breast tumour MCF-7 cells and xenografts. Br J Cancer 93:1152–1156

    PubMed  Google Scholar 

  84. Turriziani M, Caporaso P, Bonmassar L, Buccisano F, Amadori S, Venditti A, Cantonetti M, D’Atri S, Bonmassar E (2006) O6-(4-bromothenyl)guanine (PaTrin-2), a novel inhibitor of O6-alkylguanine DNA alkyl-transferase, increases the inhibitory activity of temozolomide against human acute leukaemia cells in vitro. Pharmacol Res 53:317–323

    PubMed  Google Scholar 

  85. Friedman HS, Kokkinakis DM, Pluda J, Friedman AH, Cokgor I, Haglund MM, Ashley DM, Rich J, Dolan ME, Pegg AE, Moschel RC, McLendon RE, Kerby T, Herndon JE, Bigner DD, Schold SC Jr (1998) Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol 16:3570–3575

    PubMed  Google Scholar 

  86. Friedman HS, Pluda J, Quinn JA, Ewesuedo RB, Long L, Friedman AH, Cokgor I, Colvin OM, Haglund MM, Ashley DM, Rich JN, Sampson J, Pegg AE, Moschel RC, McLendon RE, Provenzale JM, Stewart ES, Tourt-Uhlig S, Garcia-Turner AM, Herndon JE 2nd, Bigner DD, Dolan ME (2000) Phase I trial of carmustine plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 18:3522–3528

    PubMed  Google Scholar 

  87. Spiro TP, Gerson SL, Liu L, Majka S, Haaga J, Hoppel CL, Ingalls ST, Pluda JM, Willson JK (1999) O6-benzylguanine: a clinical trial establishing the biochemical modulatory dose in tumor tissue for alkyltransferase-directed DNA repair. Cancer Res 59:2402–2410

    PubMed  Google Scholar 

  88. Schold SC Jr, Kokkinakis DM, Chang SM, Berger MS, Hess KR, Schiff D, Robins HI, Mehta MP, Fink KL, Davis RL, Prados MD (2004) O6-benzylguanine suppression of O6-alkylguanine-DNA alkyltransferase in anaplastic gliomas. Neuro Oncol 6:28–32

    PubMed  Google Scholar 

  89. Quinn JA, Desjardins A, Weingart J, Brem H, Dolan ME, Delaney SM, Vredenburgh J, Rich J, Friedman AH, Reardon DA, Sampson JH, Pegg AE, Moschel RC, Birch R, McLendon RE, Provenzale JM, Gururangan S, Dancey JE, Maxwell J, Tourt-Uhlig S, Herndon JE 2nd, Bigner DD, Friedman HS (2005) Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 23:7178–7187

    PubMed  Google Scholar 

  90. Schilsky RL, Dolan ME, Bertucci D, Ewesuedo RB, Vogelzang NJ, Mani S, Wilson LR, Ratain MJ (2000) Phase I clinical and pharmacological study of O6-benzylguanine followed by carmustine in patients with advanced cancer. Clin Cancer Res 6:3025–3031

    PubMed  Google Scholar 

  91. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, Gururangan S, Friedman AH, Bigner DD, Sampson JH, McLendon RE, Herndon JE Jr, Walker A, Friedman HS (2009) Phase I trial of temozolomide plus O6-benzylguanine 5-day regimen with recurrent malignant glioma. Neuro Oncol 11:556–561

    PubMed  Google Scholar 

  92. Weingart J, Grossman SA, Carson KA, Fisher JD, Delaney SM, Rosenblum ML, Olivi A, Judy K, Tatter SB, Dolan ME (2007) Phase I trial of polifeprosan 20 with carmustine implant plus continuous infusion of intravenous O6-benzylguanine in adults with recurrent malignant glioma: new approaches to brain tumor therapy CNS consortium trial. J Clin Oncol 25:399–404

    PubMed  Google Scholar 

  93. Warren KE, Aikin AA, Libucha M, Widemann BC, Fox E, Packer RJ, Balis FM (2005) Phase I study of O6-benzylguanine and temozolomide administered daily for 5 days to pediatric patients with solid tumors. J Clin Oncol 23:7646–7653

    PubMed  Google Scholar 

  94. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Sampson JH, McLendon RE, Herndon JE 2nd, Friedman HS (2009) Phase 1 trial of temozolomide plus irinotecan plus O6-benzylguanine in adults with recurrent malignant glioma. Cancer 115:2964–2970

    PubMed  Google Scholar 

  95. Broniscer A, Gururangan S, MacDonald TJ, Goldman S, Packer RJ, Stewart CF, Wallace D, Danks MK, Friedman HS, Poussaint TY, Kun LE, Boyett JM, Gajjar A (2007) Phase I trial of single-dose temozolomide and continuous administration of o6-benzylguanine in children with brain tumors: a pediatric brain tumor consortium report. Clin Cancer Res 13:6712–6718

    PubMed  Google Scholar 

  96. Adams DM, Zhou T, Berg SL, Bernstein M, Neville K, Blaney SM (2008) Phase 1 trial of O6-benzylguanine and BCNU in children with CNS tumors: a Children’s Oncology Group study. Pediatr Blood Cancer 50:549–553

    PubMed  Google Scholar 

  97. Quinn JA, Jiang SX, Carter J, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, Gururangan S, Friedman AH, Bigner DD, Sampson JH, McLendon RE, Herndon JE 2nd, Threatt S, Friedman HS (2009) Phase II trial of Gliadel plus O6-benzylguanine in adults with recurrent glioblastoma multiforme. Clin Cancer Res 15:1064–1068

    PubMed  Google Scholar 

  98. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, Gururangan S, Friedman AH, Bigner DD, Sampson JH, McLendon RE, Herndon JE 2nd, Walker A, Friedman HS (2009) Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol 27:1262–1267

    PubMed  Google Scholar 

  99. Quinn JA, Pluda J, Dolan ME, Delaney S, Kaplan R, Rich JN, Friedman AH, Reardon DA, Sampson JH, Colvin OM, Haglund MM, Pegg AE, Moschel RC, McLendon RE, Provenzale JM, Gururangan S, Tourt-Uhlig S, Herndon JE 2nd, Bigner DD, Friedman HS (2002) Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol 20:2277–2283

    PubMed  Google Scholar 

  100. Batts ED, Maisel C, Kane D, Liu L, Fu P, O’Brien T, Remick S, Bahlis N, Gerson SL (2007) O6-benzylguanine and BCNU in multiple myeloma: a phase II trial. Cancer Chemother Pharmacol 60:415–421

    PubMed  Google Scholar 

  101. Gajewski TF, Sosman J, Gerson SL, Liu L, Dolan E, Lin S, Vokes EE (2005) Phase II trial of the O6-alkylguanine DNA alkyltransferase inhibitor O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea in advanced melanoma. Clin Cancer Res 11:7861–7865

    PubMed  Google Scholar 

  102. Ryan CW, Dolan ME, Brockstein BB, McLendon R, Delaney SM, Samuels BL, Agamah ES, Vokes EE (2006) A phase II trial of O6-benzylguanine and carmustine in patients with advanced soft tissue sarcoma. Cancer Chemother Pharmacol 58:634–639

    PubMed  Google Scholar 

  103. Sabharwal A, Corrie PG, Midgley RS, Palmer C, Brady J, Mortimer P, Watson AJ, Margison GP, Middleton MR (2009) A phase I trial of lomeguatrib and irinotecan in metastatic colorectal cancer. Cancer Chemother Pharmacol (Epub ahead of print)

  104. Caporaso P, Turriziani M, Venditti A, Marchesi F, Buccisano F, Tirindelli MC, Alvino E, Garbin A, Tortorelli G, Toppo L, Bonmassar E, D’Atri S, Amadori S (2007) Novel role of triazenes in haematological malignancies: pilot study of temozolomide, lomeguatrib and IL-2 in the chemo-immunotherapy of acute leukaemia. DNA Repair (Amst) 6:1179–1186

    Google Scholar 

  105. Ranson M, Hersey P, Thompson D, Beith J, McArthur GA, Haydon A, Davis ID, Kefford RF, Mortimer P, Harris PA, Baka S, Seebaran A, Sabharwal A, Watson AJ, Margison GP, Middleton MR (2007) Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma. J Clin Oncol 25:2540–2545

    PubMed  Google Scholar 

  106. Khan OA, Ranson M, Michael M, Olver I, Levitt NC, Mortimer P, Watson AJ, Margison GP, Midgley R, Middleton MR (2008) A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer. Br J Cancer 98:1614–1618

    PubMed  Google Scholar 

  107. Kefford RF, Thomas NP, Corrie PG, Palmer C, Abdi E, Kotasek D, Beith J, Ranson M, Mortimer P, Watson AJ, Margison GP, Middleton MR (2009) A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma. Br J Cancer 100:1245–1249

    PubMed  Google Scholar 

  108. Watson AJ, Middleton MR, McGown G, Thorncroft M, Ranson M, Hersey P, McArthur G, Davis ID, Thomson D, Beith J, Haydon A, Kefford R, Lorigan P, Mortimer P, Sabharwal A, Hayward O, Margison GP (2009) O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 100:1250–1256

    PubMed  Google Scholar 

  109. Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, Soonawalla Z, King A, Miller A, Waller S, Leung H, Margison GP, Middleton MR (2010) Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 16:743–749

    PubMed  Google Scholar 

  110. Koch D, Hundsberger T, Boor S, Kaina B (2007) Local intracerebral administration of O(6)-benzylguanine combined with systemic chemotherapy with temozolomide of a patient suffering from a recurrent glioblastoma. J Neurooncol 82:85–89

    PubMed  Google Scholar 

  111. Nelson ME, Loktionova NA, Pegg AE, Moschel RC (2004) 2-amino-O4-benzylpteridine derivatives: potent inactivators of O6-alkylguanine-DNA alkyltransferase. J Med Chem 47:3887–3891

    PubMed  Google Scholar 

  112. Javanmard S, Loktionova NA, Fang Q, Pauly GT, Pegg AE, Moschel RC (2007) Inactivation of O(6)-alkylguanine-DNA alkyltransferase by folate esters of O(6)-benzyl-2′-deoxyguanosine and of O(6)-[4-(hydroxymethyl)benzyl]guanine. J Med Chem 50:5193–5201

    PubMed  Google Scholar 

  113. Argiles JM, Lopez-Soriano FJ (1990) Why do cancer cells have such a high glycolytic rate? Med Hypotheses 32:151–155

    PubMed  Google Scholar 

  114. Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T, Imura H (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170:223–230

    PubMed  Google Scholar 

  115. Reinhard J, Eichhorn U, Wiessler M, Kaina B (2001) Inactivation of O(6)-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors. Int J Cancer 93:373–379

    PubMed  Google Scholar 

  116. Reinhard J, Hull WE, von der Lieth CW, Eichhorn U, Kliem HC, Kaina B, Wiessler M (2001) Monosaccharide-linked inhibitors of O(6)-methylguanine-DNA methyltransferase (MGMT): synthesis, molecular modeling, and structure-activity relationships. J Med Chem 44:4050–4061

    PubMed  Google Scholar 

  117. Roth RB, Samson LD (2000) Gene transfer to suppress bone marrow alkylation sensitivity. Mutat Res 462:107–120

    PubMed  Google Scholar 

  118. Geiger H, Schleimer D, Nattamai KJ, Dannenmann SR, Davies SM, Weiss BD (2006) Mutagenic potential of temozolomide in bone marrow cells in vivo. Blood 107:3010–3011

    PubMed  Google Scholar 

  119. Kushner BH, Laquaglia MP, Kramer K, Modak S, Cheung NK (2008) Recurrent metastatic neuroblastoma followed by myelodysplastic syndrome: possible leukemogenic role of temozolomide. Pediatr Blood Cancer 51:552–554

    PubMed  Google Scholar 

  120. De Vita S, De Matteis S, Laurenti L, Chiusolo P, Reddiconto G, Fiorini A, Leone G, Sica S (2005) Secondary Ph + acute lymphoblastic leukemia after temozolomide. Ann Hematol 84:760–762

    PubMed  Google Scholar 

  121. Su YW, Chang MC, Chiang MF, Hsieh RK (2005) Treatment-related myelodysplastic syndrome after temozolomide for recurrent high-grade glioma. J Neurooncol 71:315–318

    PubMed  Google Scholar 

  122. Allay JA, Dumenco LL, Koc ON, Liu L, Gerson SL (1995) Retroviral transduction and expression of the human alkyltransferase cDNA provides nitrosourea resistance to hematopoietic cells. Blood 85:3342–3351

    PubMed  Google Scholar 

  123. Moritz T, Mackay W, Glassner BJ, Williams DA, Samson L (1995) Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 55:2608–2614

    PubMed  Google Scholar 

  124. Jelinek J, Fairbairn LJ, Dexter TM, Rafferty JA, Stocking C, Ostertag W, Margison GP (1996) Long-term protection of hematopoiesis against the cytotoxic effects of multiple doses of nitrosourea by retrovirus-mediated expression of human O6-alkylguanine-DNA-alkyltransferase. Blood 87:1957–1961

    PubMed  Google Scholar 

  125. Maze R, Carney JP, Kelley MR, Glassner BJ, Williams DA, Samson L (1996) Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent. Proc Natl Acad Sci U S A 93:206–210

    PubMed  Google Scholar 

  126. Allay JA, Davis BM, Gerson SL (1997) Human alkyltransferase-transduced murine myeloid progenitors are enriched in vivo by BCNU treatment of transplanted mice. Exp Hematol 25:1069–1076

    PubMed  Google Scholar 

  127. Dolan ME, Pegg AE, Dumenco LL, Moschel RC, Gerson SL (1991) Comparison of the inactivation of mammalian and bacterial O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine and O6-methylguanine. Carcinogenesis 12:2305–2309

    PubMed  Google Scholar 

  128. Loktionova NA, Pegg AE (1996) Point mutations in human O6-alkylguanine-DNA alkyltransferase prevent the sensitization by O6-benzylguanine to killing by N,N′-bis (2-chloroethyl)-N-nitrosourea. Cancer Res 56:1578–1583

    PubMed  Google Scholar 

  129. Crone TM, Goodtzova K, Edara S, Pegg AE (1994) Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine. Cancer Res 54:6221–6227

    PubMed  Google Scholar 

  130. Xu-Welliver M, Kanugula S, Pegg AE (1998) Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res 58:1936–1945

    PubMed  Google Scholar 

  131. Woolford LB, Southgate TD, Margison GP, Milsom MD, Fairbairn LJ (2006) The P140K mutant of human O(6)-methylguanine-DNA-methyltransferase (MGMT) confers resistance in vitro and in vivo to temozolomide in combination with the novel MGMT inactivator O(6)-(4-bromothenyl)guanine. J Gene Med 8:29–34

    PubMed  Google Scholar 

  132. Davis BM, Roth JC, Liu L, Xu-Welliver M, Pegg AE, Gerson SL (1999) Characterization of the P140K, PVP(138–140)MLK, and G156A O6-methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy. Hum Gene Ther 10:2769–2778

    PubMed  Google Scholar 

  133. Davis BM, Reese JS, Koc ON, Lee K, Schupp JE, Gerson SL (1997) Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 57:5093–5099

    PubMed  Google Scholar 

  134. Koc ON, Reese JS, Davis BM, Liu L, Majczenko KJ, Gerson SL (1999) DeltaMGMT-transduced bone marrow infusion increases tolerance to O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and allows intensive therapy of 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum Gene Ther 10:1021–1030

    PubMed  Google Scholar 

  135. Kreklau EL, Pollok KE, Bailey BJ, Liu N, Hartwell JR, Williams DA, Erickson LC (2003) Hematopoietic expression of O(6)-methylguanine DNA methyltransferase-P140K allows intensive treatment of human glioma xenografts with combination O(6)-benzylguanine and 1,3-bis-(2-chloroethyl)-1-nitrosourea. Mol Cancer Ther 2:1321–1329

    PubMed  Google Scholar 

  136. Reese JS, Davis BM, Liu L, Gerson SL (1999) Simultaneous protection of G156A methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and sensitization of tumor cells using O6-benzylguanine and temozolomide. Clin Cancer Res 5:163–169

    PubMed  Google Scholar 

  137. Sawai N, Zhou S, Vanin EF, Houghton P, Brent TP, Sorrentino BP (2001) Protection and in vivo selection of hematopoietic stem cells using temozolomide, O6-benzylguanine, and an alkyltransferase-expressing retroviral vector. Mol Ther 3:78–87

    PubMed  Google Scholar 

  138. Jansen M, Sorg UR, Ragg S, Flasshove M, Seeber S, Williams DA, Moritz T (2002) Hematoprotection and enrichment of transduced cells in vivo after gene transfer of MGMT(P140K) into hematopoietic stem cells. Cancer Gene Ther 9:737–746

    PubMed  Google Scholar 

  139. Cai S, Ernstberger A, Wang H, Bailey BJ, Hartwell JR, Sinn AL, Eckermann O, Linka Y, Goebel WS, Hanenberg H, Pollok KE (2008) In vivo selection of hematopoietic stem cells transduced at a low multiplicity-of-infection with a foamy viral MGMT(P140K) vector. Exp Hematol 36:283–292

    PubMed  Google Scholar 

  140. Zielske SP, Gerson SL (2002) Lentiviral transduction of P140K MGMT into human CD34(+) hematopoietic progenitors at low multiplicity of infection confers significant resistance to -BG/BCNU and allows selection in vitro. Mol Ther 5:381–387

    PubMed  Google Scholar 

  141. Maier P, Spier I, Laufs S, Veldwijk MR, Fruehauf S, Wenz F, Zeller WJ (2010) Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K). Gene Ther 17:389–399

    PubMed  Google Scholar 

  142. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193:3–34

    PubMed  Google Scholar 

  143. Kaina B, Christmann M (2002) DNA repair in resistance to alkylating anticancer drugs. Int J Clin Pharmacol Ther 40:354–367

    PubMed  Google Scholar 

  144. Lips J, Kaina B (2001) DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 22:579–585

    PubMed  Google Scholar 

  145. Batista LF, Roos WP, Christmann M, Menck CF, Kaina B (2007) Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 67:11886–11895

    PubMed  Google Scholar 

Download references

Acknowledgments

The work of B.K. and M.C. is supported by DFG, Ka724 and Deutsche Krebsstiftung. G.P.M. thanks Cancer Research UK and CHEMORES for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Kaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaina, B., Margison, G.P. & Christmann, M. Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell. Mol. Life Sci. 67, 3663–3681 (2010). https://doi.org/10.1007/s00018-010-0491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0491-7

Keywords

Navigation