Skip to main content
Log in

Base excision repair and design of small molecule inhibitors of human DNA polymerase β

  • Multi-Author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Base excision repair (BER) can protect a cell after endogenous or exogenous genotoxic stress, and a deficiency in BER can render a cell hypersensitive to stress-induced apoptotic and necrotic cell death, mutagenesis, and chromosomal rearrangements. However, understanding of the mammalian BER system is not yet complete as it is extraordinarily complex and has many back-up processes that complement a deficiency in any one step. Due of this lack of information, we are unable to make accurate predictions on therapeutic approaches targeting BER. A deeper understanding of BER will eventually allow us to conduct more meaningful clinical interventions. In this review, we will cover historical and recent information on mammalian BER and DNA polymerase β and discuss approaches toward development and use of small molecule inhibitors to manipulate BER. With apologies to others, we will emphasize results obtained in our laboratory and those of our collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clarke ND, Kvaal M, Seeberg E (1984) Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Mol Gen Genet 197:368–372

    PubMed  Google Scholar 

  2. Lindahl T (1974) An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci USA 71:3649–3653

    PubMed  Google Scholar 

  3. Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286:1897–1905

    PubMed  Google Scholar 

  4. Wilson SH, Kunkel TA (2000) Passing the baton in base excision repair. Nat Struct Biol 7:176–178

    PubMed  Google Scholar 

  5. Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res 451:39–51

    PubMed  Google Scholar 

  6. Ni TT, Marsischky GT, Kolodner RD (1999) MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol Cell 4:439–444

    PubMed  Google Scholar 

  7. Russo MT, De Luca G, Degan P, Bignami M (2007) Different DNA repair strategies to combat the threat from 8-oxoguanine. Mutat Res 614:69–76

    PubMed  Google Scholar 

  8. Hardeland U, Bentele M, Jiricny J, Schar P (2003) The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res 31:2261–2271

    PubMed  Google Scholar 

  9. Krokan HE, Otterlei M, Nilsen H, Kavli B, Skorpen F, Andersen S, Skjelbred C, Akbari M, Aas PA, Slupphaug G (2001) Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog Nucleic Acid Res Mol Biol 68:365–386

    PubMed  Google Scholar 

  10. Nilsen H, Otterlei M, Haug T, Solum K, Nagelhus TA, Skorpen F, Krokan HE (1997) Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res 25:750–755

    PubMed  Google Scholar 

  11. Demple B, Herman T, Chen DS (1991) Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci USA 88:11450–11454

    PubMed  Google Scholar 

  12. Liu YA, Prasad R, Beard WA, Kedar PS, Hou EW, Shock DD, Wilson SH (2007) Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta. J Biol Chem 282:13532–13541

    PubMed  Google Scholar 

  13. Caldecott KW, Aoufouchi S, Johnson P, Shall S (1996) XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro. Nucleic Acids Res 24:4387–4394

    PubMed  Google Scholar 

  14. Caldecott KW, McKeown CK, Tucker JD, Ljungquist S, Thompson LH (1994) An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol 14:68–76

    PubMed  Google Scholar 

  15. Prasad R, Singhal RK, Srivastava DK, Molina JT, Tomkinson AE, Wilson SH (1996) Specific interaction of DNA polymerase β and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem 271:16000–16007

    PubMed  Google Scholar 

  16. Asagoshi K, Wilson SH (2009) Base excision repair. In: Wafik E-D, Penning TM (eds) Current cancer research. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Frosina G, Fortini P, Rossi O, Carrozzino F, Raspaglio G, Cox LS, Lane DP, Abbondandolo A, Dogliotti E (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271:9573–9578

    PubMed  Google Scholar 

  18. Beard WA, Prasad R, Wilson SH (2006) Activities and mechanism of DNA polymerase beta. In: Campbell JL, Modrich P (eds) Methods in enzymology, DNA repair, Part A. Academic Press, San Diego

  19. Beard WA, Shock DD, Wilson SH (2004) Influence of DNA structure on DNA polymerase β active site function: extension of mutagenic DNA intermediates. J Biol Chem 279:31921–31929

    PubMed  Google Scholar 

  20. Beard WA, Wilson SH (2000) Structural design of a eukaryotic DNA repair polymerase: DNA polymerase β. Mutat Res 460:231–244

    PubMed  Google Scholar 

  21. Beard WA, Wilson SH (2006) Structure and mechanism of DNA polymerase beta. Chem Rev 106:361–382

    PubMed  Google Scholar 

  22. Wilson SH (1998) Mammalian base excision repair and DNA polymerase β. Mutat Res 407:203–215

    PubMed  Google Scholar 

  23. Beard WA, Wilson SH (1998) Structural insights into DNA polymerase β fidelity: hold tight if you want it right. Chem Biol 5:R7–R13

    PubMed  Google Scholar 

  24. Wilson SH, Abbotts J, Widen S (1988) Progress towards molecular biology of DNA polymerase β. Biochim Biophys Acta 949:149–157

    PubMed  Google Scholar 

  25. Prasad R, Widen SG, Singhal RK, Watkins J, Prakash L, Wilson SH (1993) Yeast open reading frame YCR14C encodes a DNA β-polymerase-like enzyme. Nucleic Acids Res 21:5301–5307

    PubMed  Google Scholar 

  26. Shimizu K, Santocanale C, Ropp PA, Longhese MP, Plevani P, Lucchini G, Sugino A (1993) Purification and characterization of a new DNA polymerase from budding yeast Saccharomyces cerevisiae. A probable homolog of mammalian DNA polymerase beta. J Biol Chem 268:27148–27153

    PubMed  Google Scholar 

  27. Dianov G, Price A, Lindahl T (1992) Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol Cell Biol 12:1605–1612

    PubMed  Google Scholar 

  28. Matsumoto Y, Bogenhagen DF (1991) Repair of a synthetic abasic site involves concerted reactions of DNA synthesis followed by excision and ligation. Mol Cell Biol 11:4441–4447

    PubMed  Google Scholar 

  29. Wiebauer K, Jiricny J (1990) Mismatch-specific thymine DNA glycosylase and DNA polymerase beta mediate the correction of G.T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci USA 87:5842–5845

    PubMed  Google Scholar 

  30. Singhal RK, Wilson SH (1993) Short gap-filling synthesis by DNA polymerase β is processive. J Biol Chem 268:15906–15911

    PubMed  Google Scholar 

  31. Wilson SH, Singhal R, Kumar A (1993) Structural and functional studies of mammalian DNA polymerase β. In: Bohr VA, Wassermann K, Kraemer KH (eds) Alfred Benzon symposium 35: DNA repair mechanisms. Munksgaard, Copenhagen, pp 343–360

    Google Scholar 

  32. Sobol RW, Horton JK, Kühn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH (1996) Requirement of mammalian DNA polymerase β in base excision repair. Nature 379:183–186

    PubMed  Google Scholar 

  33. Prasad R, Kumar A, Widen SG, Casa-Finet JR, Wilson SH (1993) Identification of residues in the single-stranded DNA-binding site of the 8-kDa domain of the rat DNA polymerase β by UV cross-linking. J Biol Chem 268:22746–22755

    PubMed  Google Scholar 

  34. Horton JK, Srivastava DK, Zmudzka BZ, Wilson SH (1995) Strategic down-regulation of DNA polymerase β by antisense RNA sensitizes mammalian cells to specific DNA damaging agents. Nucleic Acids Res 23:3810–3815

    PubMed  Google Scholar 

  35. Zmudzka B, Wilson SH (1990) Deregulation of DNA polymerase β by sense and antisense RNA expression in mouse 3T3 cells alters cell growth. Somat Cell Mol Genet 16:311–320

    PubMed  Google Scholar 

  36. Singhal RK, Prasad R, Wilson SH (1995) DNA polymerase β conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J Biol Chem 270:949–957

    PubMed  Google Scholar 

  37. Abbotts J, SenGupta DN, Zon G, Wilson SH (1988) Studies on the mechanism of Escherichia coli DNA polymerase I large fragment: effect of template sequence and substrate variation on termination of synthesis. J Biol Chem 263:15094–15103

    PubMed  Google Scholar 

  38. Kumar A, Casas-finet JR, Luneau CJ, Karpel RL, Merrill BM, Williams KR, Wilson SH (1990) Mammalian heterogeneous nuclear ribonucleoprotein A1: nucleic acid binding properties of the COOH-terminal domain. J Biol Chem 265:17094–17100

    PubMed  Google Scholar 

  39. SenGupta DN, Zmudzka BZ, Kumar P, Cobianchi F, Skowronski J, Wilson SH (1986) Sequence of human DNA polymerase β mRNA obtained through cDNA cloning. Biochem Biophys Res Commun 136:341–347

    PubMed  Google Scholar 

  40. Zmudzka BZ, SenGupta D, Matsukage A, Cobianchi F, Kumar P, Wilson SH (1986) Structure of rat DNA polymerase β revealed by partial amino acid sequencing and cDNA cloning. Proc Natl Acad Sci USA 83:5106–5110

    PubMed  Google Scholar 

  41. Abbotts J, SenGupta DN, Zmudzka B, Widen SG, Notario V, Wilson SH (1988) Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme. Biochemistry 27:901–909

    PubMed  Google Scholar 

  42. Patterson TA, Little W, Cheng X, Widen SG, Kumar A, Beard WA, Wilson SH (2000) Molecular cloning and high-level expression of human polymerase β cDNA and comparison of the purified recombinant human and rat enzymes. Protein Expr Purif 18:100–110

    PubMed  Google Scholar 

  43. Kim SJ, Lewis MS, Knutson JR, Porter DK, Kumar A, Wilson SH (1994) Characterization of the tryptophan fluorescence and hydrodynamic properties of rat DNA polymerase β. J Mol Biol 244:224–235

    PubMed  Google Scholar 

  44. Beard WA, Wilson SH (1995) Purification and domain-mapping of mammalian DNA polymerase β. Methods Enzymol 262:98–107

    PubMed  Google Scholar 

  45. Kumar A, Widen SG, Williams KR, Kedar P, Karpel RL, Wilson SH (1990) Studies of the domain structure of mammalian DNA polymerase β: identification of a discrete template binding domain. J Biol Chem 265:2124–2131

    PubMed  Google Scholar 

  46. Casas-Finet JR, Kumar A, Karpel RL, Wilson SH (1992) Mammalian DNA polymerase β: characterization of a 16-kDa transdomain fragment containing the nucleic acid-binding activities of the native enzyme. Biochemistry 31:10272–10280

    PubMed  Google Scholar 

  47. Casas-Finet JR, Kumar A, Morris G, Wilson SH (1991) Spectroscopic studies of the structural domains of mammalian DNA β-polymerase. J Biol Chem 29:19618–19625

    Google Scholar 

  48. Piersen CE, Prasad R, Wilson SH, Lloyd RS (1996) Evidence for an imino intermediate in the DNA polymerase beta deoxyribose phosphate excision reaction. J Biol Chem 271:17811–17815

    PubMed  Google Scholar 

  49. Prasad R, Beard WA, Chyan JY, Maciejewski MW, Mullen GP, Wilson SH (1998) Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase β as revealed by site-directed mutagenesis: DNA binding and 5′-deoxyribose phosphate lyase activities. J Biol Chem 273:11121–11126

    PubMed  Google Scholar 

  50. Beard WA, Shock DD, Vande Berg BJ, Wilson SH (2002) Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. J Biol Chem 277:47393–47398

    PubMed  Google Scholar 

  51. Beard WA, Wilson SH (2001) DNA lesion bypass polymerases open up. Structure 9:759–764

    PubMed  Google Scholar 

  52. Beard WA, Wilson SH (2001) DNA polymerases lose their grip. Nat Struct Biol 8:915–917

    PubMed  Google Scholar 

  53. Krahn JM, Beard WA, Miller H, Grollman AP, Wilson SH (2003) Structure of DNA polymerase β with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. Structure 11:121–127

    PubMed  Google Scholar 

  54. Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J (1994) Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264:1891–1903

    PubMed  Google Scholar 

  55. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J (1996) Crystal structures of human DNA polymerase β complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. Biochemistry 35:12742–12761

    PubMed  Google Scholar 

  56. Pelletier H, Sawaya MR, Wolfle W, Wilson SJ, Kraut J (1996) A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase β. Biochemistry 35:12762–12777

    PubMed  Google Scholar 

  57. Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J (1994) Crystal structure of rat DNA polymerase β: evidence for a common polymerase mechanism. Science 264:1930–1935

    PubMed  Google Scholar 

  58. Sawaya MR, Prasad P, Wilson SH, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36:11205–11215

    PubMed  Google Scholar 

  59. Krahn JM, Beard WA, Wilson SH (2004) Structural insights into DNA polymerase beta deterrents for misincorporation support an induced-fit mechanism for fidelity. Structure 12:1823–1832

    PubMed  Google Scholar 

  60. Sobol RW, Prasad R, Evenski A, Baker A, Yang XP, Horton JK, Wilson SH (2000) The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405:807–810

    PubMed  Google Scholar 

  61. Liu DJ, Derose EF, Prasad R, Wilson SH, Mullen GP (1994) Assignments of 1H, 15N, and 13C resonances for the backbone and side chains of the N-terminal domain of DNA polymerase β. Determination of the secondary structure and tertiary contacts. Biochemistry 33:9537–9545

    PubMed  Google Scholar 

  62. Liu DJ, Prasad R, Wilson SH, Derose EF, Mullen GP (1996) Three-dimensional solution structure of the N-terminal domain of DNA polymerase β and mapping of the ssDNA interaction interface. Biochemistry 35:6188–6200

    PubMed  Google Scholar 

  63. Mullen GP, Antuch W, Maciejewski MW, Prasad R, Wilson SH (1997) Insights into the mechanism of the β-elimination catalyzed by the N-terminal domain of DNA polymerase β. Tetrahedron 53:12057–12066

    Google Scholar 

  64. Beard WA, Wilson SH (2003) Structural insights into the origins of DNA polymerase fidelity. Structure 11:489–496

    PubMed  Google Scholar 

  65. Batra VK, Beard WA, Shock DD, Krahn JM, Pedersen LC, Wilson SH (2006) Magnesium-induced assembly of a complete DNA polymerase catalytic complex. Structure 14:757–766

    PubMed  Google Scholar 

  66. Lin P, Pedersen LC, Batra VK, Beard WA, Wilson SH, Pedersen LG (2006) Energy analysis of chemistry for correct insertion by DNA polymerase beta. Proc Natl Acad Sci USA 103:13294–13299

    PubMed  Google Scholar 

  67. Radhakrishnan R, Arora K, Wang Y, Beard WA, Wilson SH, Schlick T (2006) Regulation of DNA repair fidelity by molecular checkpoints: “gates” in DNA polymerase beta’s substrate selection. Biochemistry 45:15142–15156

    PubMed  Google Scholar 

  68. Batra VK, Beard WA, Shock DD, Pedersen LC, Wilson SH (2008) Structures of DNA polymerase beta with active-site mismatches suggest a transient abasic site intermediate during misincorporation. Mol Cell 30:315–324

    PubMed  Google Scholar 

  69. Chen K-H, Yakes FM, Srivastava DK, Singhal RK, Sobol RW, Horton JK, Van Houten B, Wilson SH (1998) Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines. Nucleic Acids Res 26:2001–2007

    PubMed  Google Scholar 

  70. Fornace J, Albert J, Zmudzka B, Hollander MC, Wilson SH (1989) Induction of β-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells. Mol Cell Biol 9:851–853

    PubMed  Google Scholar 

  71. Srivastava DK, Husain I, Arteaga CL, Wilson SH (1999) DNA polymerase β expression differences in selected human tumors and cell lines. Carcinogenesis 20:1049–1054

    PubMed  Google Scholar 

  72. Horton JK, Baker A, Vande Berg BJ, Sobol RW, Wilson SH (2002) Involvement of DNA polymerase β in protection against the cytotoxicity of oxidative DNA damage. DNA Repair (Amst) 1:317–333

    Google Scholar 

  73. Hou EW, Prasad R, Asagoshi K, Masaoka A, Wilson SH (2007) Comparative assessment of plasmid and oligonucleotide DNA substrates in measurement of in vitro base excision repair activity. Nucleic Acids Res 35(17):e112

    PubMed  Google Scholar 

  74. Masaoka A, Horton JK, Beard WA, Wilson SH (2009) DNA polymerase beta and PARP activities in base excision repair in living cells. DNA Repair (Amst) 8:1290–1299

    Google Scholar 

  75. Asagoshi K, Liu Y, Masaoka A, Lan L, Prasad R, Horton JK, Brown AR, Wang XH, Bdour HM, Sobol RW, Taylor JS, Yasui A, Wilson SH (2009) DNA polymerase β-dependent long patch base excision repair in living cells. DNA Repair (Amst) 9:109–119

    Google Scholar 

  76. Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, Tomkinson AE, Izumi T, Prasad R, Wilson SH, Mitra S, Hazra TK (2004) AP endonuclease-independent DNA base excision repair in human cells. Mol Cell 15:209–220

    PubMed  Google Scholar 

  77. Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, McMurray CT, Wilson SH (2009) Coordination between polymerase β and FEN1 can modulate CAG repeat expansion. J Biol Chem 284:28352–28366

    PubMed  Google Scholar 

  78. Lavrik OI, Prasad R, Sobol RW, Horton JK, Ackerman EJ, Wilson SH (2001) Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate: evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. J Biol Chem 276:25541–25548

    PubMed  Google Scholar 

  79. Cistulli C, Lavrik OI, Prasad R, Hou E, Wilson SH (2004) AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate. DNA Repair (Amst) 3:581–591

    Google Scholar 

  80. Lan L, Nakajima S, Oohata Y, Takao M, Okano S, Masutani M, Wilson SH, Yasui A (2004) In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc Natl Acad Sci USA 101:13738–13743

    PubMed  Google Scholar 

  81. Wilson SH (1990) Gene regulation and structure-function studies of mammalian DNA polymerase β. In: Strauss PR, Wilson SH (eds) The eukaryotic nucleus: molecular biochemistry and macromolecular assemblies. Telford Press, Inc., Caldwell, pp 199–233

    Google Scholar 

  82. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    PubMed  Google Scholar 

  83. Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH (2008) XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 18:48–63

    PubMed  Google Scholar 

  84. Gryk MR, Marintchev A, Maciejewski MW, Robertson A, Wilson SH, Mullen GP (2002) Mapping of the interaction interface of DNA polymerase β with XRCC1. Structure 10:1709–1720

    PubMed  Google Scholar 

  85. Marintchev A, Robertson A, Dimitriadis EK, Prasad R, Wilson SH, Mullen GP (2000) Domain specific interaction in the XRCC1-DNA polymerase β complex. Nucleic Acids Res 28:2049–2059

    PubMed  Google Scholar 

  86. Sobol RW, Foley JF, Nyska A, Davidson MG, Wilson SH (2003) Regulated over-expression of DNA polymerase β mediates early onset cataract in mice. DNA Repair (Amst) 2:609–622

    Google Scholar 

  87. Horton JK, Stefanick DF, Naron JM, Kedar PS, Wilson SH (2005) Poly(ADP-ribose) polymerase activity prevents signaling pathways for cell cycle arrest after DNA methylating agent exposure. J Biol Chem 280:15773–15785

    PubMed  Google Scholar 

  88. Horton JK, Stefanick DF, Wilson SH (2005) Involvement of poly(ADP-ribose) polymerase activity in regulating Chk1-dependent apoptotic cell death. DNA Repair (Amst) 4:1111–1120

    Google Scholar 

  89. Horton JK, Wilson SH (2007) Hypersensitivity phenotypes associated with genetic and synthetic inhibitor-induced base excision repair deficiency. DNA Repair (Amst) 6:530–543

    Google Scholar 

  90. Kedar PS, Stefanick DF, Horton JK, Wilson SH (2008) Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. DNA Repair (Amst) 7:1787–1798

    Google Scholar 

  91. Carrozza MJ, Stefanick DF, Horton JK, Kedar PS, Wilson SH (2009) PARP inhibition during alkylation-induced genotoxic stress signals a cell cycle checkpoint response mediated by ATM. DNA Repair (Amst) 8:1264–1272

    Google Scholar 

  92. Heacock M, Stefanick DF, Horton JK, Wilson SH (2010) Alkylation damage combined with PARP inhibition in cells results in S-phase dependent double-strand breaks. DNA Repair (Amst) 9:929–936

    Google Scholar 

  93. Horton JK, Joyce-Gray DF, Pachkowski BF, Swenberg JA, Wilson SH (2003) Hypersensitivity of DNA polymerase β null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions. DNA Repair (Amst) 2:27–48

    Google Scholar 

  94. Hu HY, Horton JK, Gryk MR, Prasad R, Naron JM, Sun DA, Hecht SM, Wilson SH, Mullen GP (2004) Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. J Biol Chem 279:39736–39744

    PubMed  Google Scholar 

  95. Dorjsuren D, Wilson DM, Beard WA, McDonald JP, Austin CP, Woodgate R, Wilson SH, Simeonov A (2009) A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases. Nucleic Acids Res 37:e128

    PubMed  Google Scholar 

  96. Sucato CA, Upton TG, Kashemirov BA, Batra VK, Martinek V, Xiang Y, Beard WA, Pedersen LC, Wilson SH, McKenna CE, Florian J, Warshel A, Goodman MF (2007) Modifying the beta, gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase beta. Biochemistry 46:461–471

    PubMed  Google Scholar 

  97. Sucato CA, Upton TG, Kashemirov BA, Osuna J, Oertell K, Beard WA, Wilson SH, Florian J, Warshel A, McKenna CE, Goodman MF (2008) DNA polymerase beta fidelity: halomethylene-modified leaving groups in pre-steady-state kinetic analysis reveal differences at the chemical transition state. Biochemistry 47:870–879

    PubMed  Google Scholar 

  98. Cavanaugh NA, Beard WA, Wilson SH (2010) DNA polymerase β ribonucleotide discrimination: insertion, misinsertion, extension, and coding. J Biol Chem 285:24457–24465

    Google Scholar 

Download references

Acknowledgments

The authors thank Bonnie E. Mesmer for editorial assistance. This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01-ES050158 & Z01-ES050159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel H. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S.H., Beard, W.A., Shock, D.D. et al. Base excision repair and design of small molecule inhibitors of human DNA polymerase β. Cell. Mol. Life Sci. 67, 3633–3647 (2010). https://doi.org/10.1007/s00018-010-0489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0489-1

Keywords

Navigation