Skip to main content

Advertisement

Log in

Cellular and functional evidence for a protective action of neurosteroids against vincristine chemotherapy-induced painful neuropathy

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Painful neuropathy is a major side-effect limiting cancer chemotherapy. Therefore, novel strategies are required to suppress the neuropathic effects of anticancer drugs without altering their chemotherapeutic effectiveness. By combining biochemical, neuroanatomical/neurochemical, electrophysiological and behavioral methods, we demonstrated that progesterone-derived neurosteroids including 5α-dihydroprogesterone and 3α,5α-tetrahydroprogesterone suppressed neuropathic symptoms evoked in naive rats by vincristine. Neurosteroids counteracted vincristine-induced alterations in peripheral nerves including 2′,3′-cyclic nucleotide 3′-phosphodiesterase, neurofilament-200 kDa and intraepidermal nerve fiber repression, nerve conduction velocity, and pain transmission abnormalities (allodynia/hyperalgesia). In skin-tumor rats generated with carcinosarcoma-cells, vincristine, which suppressed the skin tumor and restored normal blood concentration of vascular endothelial growth factor (VEGF), reproduced neuropathic side-effects. Administered alone, neurosteroids did not affect the tumor and VEGF level. Combined with vincristine, neurosteroids preserved vincristine anti-tumor action but counteracted vincristine-induced neural side-effects. Together, these results provide valuable insight into the cellular and functional mechanisms underlying anticancer drug-induced neuropathy and suggest a neurosteroid-based strategy to eradicate painful neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dumic M, Radman I, Krnic N, Nola M, Kusec R, Begovic D, Labar B, Rados M (2007) Successful treatment of diffuse large B-cell non-Hodgkin lymphoma with modified CHOP (cyclophosphamide/doxorubicin/vincristine/prednisone) chemotherapy and rituximab in a patient with Nijmegen syndrome. Clin Lymphoma Myeloma 7:590–593

    Article  CAS  PubMed  Google Scholar 

  2. El-Helw LM, Hancock BW (2007) Treatment of metastatic gestational trophoblastic neoplasia. Lancet Oncol 8:715–724

    Article  CAS  PubMed  Google Scholar 

  3. Moore A, Pinkerton R (2009) Vincristine: can its therapeutic index be enhanced? Pediatr Blood Cancer 53:1180–1187

    Article  PubMed  Google Scholar 

  4. Antoine JC, Camdessanche JP (2007) Peripheral nervous system involvement in patients with cancer. Lancet Neurol 6:75–86

    Article  PubMed  Google Scholar 

  5. Dougherty PM, Cata JP, Burton AW, Vu K, Weng HR (2007) Dysfunction in multiple primary afferent fiber subtypes revealed by quantitative sensory testing in patients with chronic vincristine-induced pain. J Pain Symptom Manag 33:166–179

    Article  CAS  Google Scholar 

  6. Polomano RC, Bennett GJ (2001) Chemotherapy-evoked painful peripheral neuropathy. Pain Med 2:8–14

    Article  CAS  PubMed  Google Scholar 

  7. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  PubMed  Google Scholar 

  8. Lauria G, Lombardi R, Borgna M, Penza P, Bianchi R, Savino C, Canta A, Nicolini G, Marmiroli P, Cavaletti G (2005) Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. J Peripher Nerv Syst 10:202–208

    Article  PubMed  Google Scholar 

  9. Cliffer KD, Siuciak JA, Carson SR, Radley HE, Park JS, Lewis DR, Zlotchenko E, Nguyen T, Garcia K, Tonra JR, Stambler N, Cedarbaum JM, Bodine SC, Lindsay RM, DiStefano PS (1998) Physiological characterization of taxol-induced large-fiber sensory neuropathy in the rat. Ann Neurol 43:46–55

    Article  CAS  PubMed  Google Scholar 

  10. Authier N, Gillet JP, Fialip J, Eschalier A, Coudore F (2003) A new animal model of vincristine-induced nociceptive peripheral neuropathy. Neurotoxicology 24:797–805

    Article  CAS  PubMed  Google Scholar 

  11. Flatters SJ, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122:245–257

    Article  CAS  PubMed  Google Scholar 

  12. Siau C, Xiao W, Bennett GJ (2006) Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 201:507–514

    Article  CAS  PubMed  Google Scholar 

  13. Patte C (1997) Non-Hodgkin’s lymphoma. In: Pinkerton CR, Plowman PN (eds) Paediatric oncology. Clinical practice and controversies, 2nd edn. Chapman & Hall Medical, London

    Google Scholar 

  14. de Kraker J, Graf N, van Tinteren H, Pein F, Sandstedt B, Godzinski J, Tournade MF (2004) Reduction of postoperative chemotherapy in children with stage I intermediate-risk and anaplastic Wilms’ tumour (SIOP 93-01 trial): a randomised controlled trial. Lancet 364:1229–1235

    Article  PubMed  Google Scholar 

  15. Schiavetti A, Frascarelli M, Uccini S, Novelli A (2004) Vincristine neuropathy: neurophysiological and genetic studies in a case of Wilms tumor. Pediatr Blood Cancer 43:606–609

    Article  PubMed  Google Scholar 

  16. Verstappen CC, Koeppen S, Heimans JJ, Huijgens PC, Scheulen ME, Strumberg D, Kiburg B, Postma TJ (2005) Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology 64:1076–1077

    CAS  PubMed  Google Scholar 

  17. Stein DG (2008) Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 57:386–397

    Article  CAS  PubMed  Google Scholar 

  18. Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE (2007) Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 28:387–439

    Article  CAS  PubMed  Google Scholar 

  19. Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG (2008) Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci 65:777–797

    Article  CAS  PubMed  Google Scholar 

  20. Patte-Mensah C, Li S, Mensah-Nyagan AG (2004) Impact of neuropathic pain on the gene expression and activity of cytochrome P450side-chain-cleavage in sensory neural networks. Cell Mol Life Sci 61:2274–2284

    Article  CAS  PubMed  Google Scholar 

  21. Patte-Mensah C, Kibaly C, Mensah-Nyagan AG (2005) Substance P inhibits progesterone conversion to neuroactive metabolites in spinal sensory circuit: a potential component of nociception. Proc Natl Acad Sci USA 102:9044–9049

    Article  CAS  PubMed  Google Scholar 

  22. Meyer L, Venard C, Schaeffer V, Patte-Mensah C, Mensah-Nyagan AG (2008) The biological activity of 3alpha-hydroxysteroid oxido-reductase in the spinal cord regulates thermal and mechanical pain thresholds after sciatic nerve injury. Neurobiol Dis 30:30–41

    Article  CAS  PubMed  Google Scholar 

  23. LeBlanc AC, Pringle J, Lemieux J, Poduslo JF, Mezei C (1992) Regulation of 2’,3’-cyclic nucleotide phosphodiesterase gene expression in experimental peripheral neuropathies. Brain Res Mol Brain Res 15:40–46

    Article  CAS  PubMed  Google Scholar 

  24. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374

    Article  CAS  PubMed  Google Scholar 

  25. Weng HR, Cordella JV, Dougherty PM (2003) Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia. Pain 103:131–138

    Article  CAS  PubMed  Google Scholar 

  26. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  CAS  PubMed  Google Scholar 

  27. Sprinkle TJ (1989) 2’,3’-cyclic nucleotide 3’-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit Rev Neurobiol 4:235–301

    CAS  PubMed  Google Scholar 

  28. Yoshino JE, Dinneen MP, Sprinkle TJ, DeVries GH (1985) Localization of 2’,3’-cyclic nucleotide 3’-phosphodiesterase on cultured Schwann cells. Brain Res 325:199–203

    Article  CAS  PubMed  Google Scholar 

  29. Shaw G, Osborn M, Weber K (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments. Eur J Cell Biol 42:1–9

    CAS  PubMed  Google Scholar 

  30. Stoner E (1990) The clinical development of a 5alpha-reductase inhibitor, finasteride. J Steroid Biochem Molec Biol 37:375–378

    Article  CAS  PubMed  Google Scholar 

  31. Finn DA, Beadles-Bohling AS, Beckley EH, Ford MM, Gililland KR, Gorin-Meyer RE, Wiren KM (2006) A new look at the 5alpha-reductase inhibitor Finasteride. CNS Drug Rev 12:53–76

    Article  CAS  PubMed  Google Scholar 

  32. Moore DJ, Powis G, Richardson RL, Pittelkow MR (1985) Topical chemotherapy of intradermal Walker 256 carcinosarcoma with diaziquone and doxorubicin in the rat. Cancer Res 45:5466–5472

    CAS  PubMed  Google Scholar 

  33. Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217

    Article  CAS  PubMed  Google Scholar 

  34. Ravula SK, Wang MS, McClain MA, Asress SA, Frazier B, Glass JD (2007) Spatiotemporal localization of injury potentials in DRG neurons during vincristine-induced axonal degeneration. Neurosci Lett 415:34–39

    Article  CAS  PubMed  Google Scholar 

  35. Borgna M, Lombardi R, Lauria G, Grezzi P, Savino C, Bianchi R, Oggioni N, Canta A, Lanzani F, Galbiati S, Frigeni B, Giussani G, Tredici G, Cavaletti G (2004) Intraepidermal innervation and tail nerve conduction velocity in neurotoxicity models: results of a correlation study in normal and pathological conditions. J Peripher Nerv Syst 9:104–105

    Article  Google Scholar 

  36. Djouhri L, Koutsikou S, Fang X, McMullan S, Lawson SN (2006) Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in C-fiber nociceptors. J Neurosci 26:1281–1292

    Article  CAS  PubMed  Google Scholar 

  37. Meyer RA, Ringkamp M, Campbell JN, Raja SN (2006) Peripheral mechanisms of cutaneous nociception. In: McMahon SB, Koltzenburg M (eds) Melzack and Wall’s textbook of pain. Elsevier, London

    Google Scholar 

  38. Xiao WH, Bennett GJ (2008) Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain 135:262–270

    Article  CAS  PubMed  Google Scholar 

  39. Tanner KD, Reichling DB, Levine JD (1998) Nociceptor hyper-responsiveness during vincristine-induced painful peripheral neuropathy in the rat. J Neurosci 18:6480–6491

    CAS  PubMed  Google Scholar 

  40. Koenig HL, Schumacher M, Ferzaz B, Thi AN, Ressouches A, Guennoun R, Jung-Testas I, Robel P, Akwa Y, Baulieu EE (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500–1503

    Article  CAS  PubMed  Google Scholar 

  41. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575

    Article  CAS  PubMed  Google Scholar 

  42. Brann DW, Putnam CD, Mahesh VB (1990) Dose-related effects of progesterone and 5 alpha-dihydroprogesterone upon estrogen-induced prolactin release. J Neuroendocrinol 2:341–345

    Article  CAS  PubMed  Google Scholar 

  43. Roglio I, Bianchi R, Camozzi F, Carozzi V, Cervellini I, Crippa D, Lauria G, Cavaletti G, Melcangi RC (2009) Docetaxel-induced peripheral neuropathy: protective effects of dihydroprogesterone and progesterone in an experimental model. J Peripher Nerv Syst 14:36–44

    Article  CAS  PubMed  Google Scholar 

  44. Patte-Mensah C, Penning TM, Mensah-Nyagan AG (2004) Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J Comp Neurol 477:286–299

    Article  CAS  PubMed  Google Scholar 

  45. Ciriza I, Carrero P, Frye CA, Garcia-Segura LM (2006) Reduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus. The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective. J Neurobiol 66:916–928

    Article  CAS  PubMed  Google Scholar 

  46. Naik AK, Pathirathna S, Jevtovic-Todorovic V (2008) GABAA receptor modulation in dorsal root ganglia in vivo affects chronic pain after nerve injury. Neuroscience 154:1539–1553

    Article  CAS  PubMed  Google Scholar 

  47. Jevtovic-Todorovic V, Covey DF, Todorovic SM (2009) Are neuroactive steroids promising therapeutic agents in the management of acute and chronic pain? Psychoneuroendocrinology 34(Suppl 1):S178–S185

    Article  CAS  PubMed  Google Scholar 

  48. O’Connor AB, Dworkin RH (2009) Treatment of neuropathic pain: an overview of recent guidelines. Am J Med 122(Suppl 10):S22–S32

    Article  PubMed  Google Scholar 

  49. Frye CA, Walf AA, Rhodes ME, Harney JP (2004) Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res 1004:116–124

    Article  CAS  PubMed  Google Scholar 

  50. Gambhir M, Mediratta PK, Sharma KK (2002) Evaluation of the analgesic effect of neurosteroids and their possible mechanism of action. Indian J Physiol Pharmacol 46:202–208

    CAS  PubMed  Google Scholar 

  51. Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, Garcia-Segura LM, Lauria G, Magnaghi V, Roglio I, Melcangi RC (2007) Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. Neuroscience 144:1293–1304

    Article  CAS  PubMed  Google Scholar 

  52. Kiguchi N, Maeda T, Kobayashi Y, Kishioka S (2008) Up-regulation of tumor necrosis factor-alpha in spinal cord contributes to vincristine-induced mechanical allodynia in mice. Neurosci Lett 445:140–143

    Article  CAS  PubMed  Google Scholar 

  53. Muta M, Matsumoto G, Nakashima E, Toi M (2006) Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation. Clin Cancer Res 12:264–272

    Article  CAS  PubMed  Google Scholar 

  54. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  CAS  PubMed  Google Scholar 

  55. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10

    Article  CAS  PubMed  Google Scholar 

  56. Tanner KD, Levine JD, Topp KS (1998) Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J Comp Neurol 395:481–492

    Article  CAS  PubMed  Google Scholar 

  57. Murakami K, Fellous A, Baulieu EE, Robel P (2000) Pregnenolone binds to microtubule-associated protein 2 and stimulates microtubule assembly. Proc Natl Acad Sci USA 97:3579–3584

    Article  CAS  PubMed  Google Scholar 

  58. Fontaine-Lenoir V, Chambraud B, Fellous A, David S, Duchossoy Y, Baulieu EE, Robel P (2006) Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc Natl Acad Sci USA 103:4711–4716

    Article  CAS  PubMed  Google Scholar 

  59. Aley KO, Reichling DB, Levine JD (1996) Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans. Neuroscience 73:259–265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Association Ti’toine (Normandie, France) and Université de Strasbourg (France). L.M. was a postdoctoral fellow supported by Association Ti’toine (Normandie, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayikoe Guy Mensah-Nyagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, L., Patte-Mensah, C., Taleb, O. et al. Cellular and functional evidence for a protective action of neurosteroids against vincristine chemotherapy-induced painful neuropathy. Cell. Mol. Life Sci. 67, 3017–3034 (2010). https://doi.org/10.1007/s00018-010-0372-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0372-0

Keywords

Navigation