Skip to main content
Log in

Enrichment of ligands with molecular dockings and subsequent characterization for human alcohol dehydrogenase 3

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alcohol dehydrogenase 3 (ADH3) has been assigned a role in nitric oxide homeostasis due to its function as an S-nitrosoglutathione reductase. As altered S-nitrosoglutathione levels are often associated with disease, compounds that modulate ADH3 activity might be of therapeutic interest. We performed a virtual screening with molecular dockings of more than 40,000 compounds into the active site of human ADH3. A novel knowledge-based scoring method was used to rank compounds, and several compounds that were not known to interact with ADH3 were tested in vitro. Two of these showed substrate activity (9-decen-1-ol and dodecyltetraglycol), where calculated binding scoring energies correlated well with the logarithm of the k cat/K m values for the substrates. Two compounds showed inhibition capacity (deoxycholic acid and doxorubicin), and with these data three different lines for specific inhibitors for ADH3 are suggested: fatty acids, glutathione analogs, and cholic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

GSNO:

S-Nitrosoglutathione

HMGSH:

S-Hydroxymethylglutathione

MC:

Monte Carlo

NO:

Nitric oxide

VS:

Virtual screening

12-HDA:

12-Hydroxydodecanoic acid

References

  1. Höög J-O, Hedberg JJ, Strömberg P, Svensson S (2001) Mammalian alcohol dehydrogenase—functional and structural implications. J Biomed Sci 8:71–76

    Article  PubMed  Google Scholar 

  2. Danielsson O, Jörnvall H (1992) “Enzymogenesis”: classical liver alcohol dehydrogenase origin from the glutathione-dependent formaldehyde dehydrogenase line. Proc Natl Acad Sci USA 89:9247–9251

    Article  CAS  PubMed  Google Scholar 

  3. Koivusalo M, Baumann M, Uotila L (1989) Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett 257:105–109

    Article  CAS  PubMed  Google Scholar 

  4. Jensen DE, Belka GK, Du Bois GC (1998) S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem J 331:659–668

    CAS  PubMed  Google Scholar 

  5. Staab CA, Hellgren M, Höög J-O (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: dual functions of alcohol dehydrogenase 3: implications with focus on formaldehyde dehydrogenase and S-nitrosoglutathione reductase activities. Cell Mol Life Sci 65:3950–3960

    Article  CAS  PubMed  Google Scholar 

  6. Jörnvall H, Höög J-O, Persson B (1999) SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett 445:261–264

    Article  PubMed  Google Scholar 

  7. Lee SL, Wang MF, Lee AI, Yin SJ (2003) The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett 544:143–147

    Article  CAS  PubMed  Google Scholar 

  8. Hedberg JJ, Höög J-O, Nilsson JA, Xi Z, Elfwing Å, Grafström RC (2000) Expression of alcohol dehydrogenase 3 in tissue and cultured cells from human oral mucosa. Am J Pathol 157:1745–1755

    CAS  PubMed  Google Scholar 

  9. Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG, Stamler JS (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116:617–627

    Article  CAS  PubMed  Google Scholar 

  10. Molotkov A, Fan X, Deltour L, Foglio MH, Martras S, Farrés J, Parés X, Duester G (2002) Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 99:5337–5342

    Article  CAS  PubMed  Google Scholar 

  11. Haqqani AS, Do SK, Birnboim HC (2003) The role of a formaldehyde dehydrogenase-glutathione pathway in protein S-nitrosation in mammalian cells. Nitric Oxide 9:172–181

    Article  CAS  PubMed  Google Scholar 

  12. Staab CA, Ålander J, Brandt M, Lengqvist J, Morgenstern R, Grafström RC, Höög J-O (2008) Reduction of S-nitrosoglutathione by alcohol dehydrogenase 3 is facilitated by substrate alcohols via direct cofactor recycling and leads to GSH-controlled formation of glutathione transferase inhibitors. Biochem J 413:493–504

    Article  CAS  PubMed  Google Scholar 

  13. Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M (2009) S-nitrosoglutathione reductase: an important regulator in human asthma. Am J Respir Crit Care Med 180:226–231

    Article  CAS  PubMed  Google Scholar 

  14. Iborra FJ, Renau-Piqueras J, Portoles M, Boleda MD, Guerri C, Parés X (1992) Immunocytochemical and biochemical demonstration of formaldehyde dehydrogenase (class III alcohol dehydrogenase) in the nucleus. J Histochem Cytochem 40:1865–1878

    CAS  PubMed  Google Scholar 

  15. Staab CA, Hellgren M, Grafström RC, Höög J-O (2009) Medium-chain fatty acids and glutathione derivatives as inhibitors of S-nitrosoglutathione reduction mediated by alcohol dehydrogenase 3. Chem Biol Interact 180:113–118

    Article  CAS  PubMed  Google Scholar 

  16. Sanghani PC, Davis WI, Fears SL, Green SL, Zhai L, Tang Y, Martin E, Bryan NS, Sanghani SP (2009) Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase. J Biol Chem 284:24354–24362

    Article  CAS  PubMed  Google Scholar 

  17. Totrov M, Abagyan R (2001) High-throughput docking for lead generation. Curr Opin Chem Biol 5:375–382

    Article  PubMed  Google Scholar 

  18. Carlsson J, Boukharta L, Åqvist J (2008) Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase. J Med Chem 51:2648–2656

    Article  CAS  PubMed  Google Scholar 

  19. Deng Y, Roux B (2009) Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 113:2234–2246

    Article  CAS  PubMed  Google Scholar 

  20. Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235:983–1002

    Article  CAS  PubMed  Google Scholar 

  21. Bursulaya BD, Totrov M, Abagyan R, Brooks CL (2003) 3rd Comparative study of several algorithms for flexible compound docking. J Comput Aided Mol Des 17:755–763

    Article  CAS  PubMed  Google Scholar 

  22. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  CAS  PubMed  Google Scholar 

  23. Abagyan R, Totrov M, Kuznetsov DN (1994) ICM—a new method for protein modeling and design. Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    Article  CAS  Google Scholar 

  24. Nemethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J Phys Chem 96:6472–6484

    Article  CAS  Google Scholar 

  25. Schapira M, Raaka BM, Samuels HH, Abagyan R (2000) Rational discovery of novel nuclear hormone receptor antagonists. Proc Natl Acad Sci USA 97:1008–1013

    Article  CAS  PubMed  Google Scholar 

  26. Han L, Wang Y, Bryant SH (2008) Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem. BMC Bioinform 9:401

    Article  Google Scholar 

  27. Ferrari AM, Wei BQ, Costantino L, Shoichet BK (2004) Soft Docking and multiple receptor conformation in virtual screening. J Med Chem 47:5076–5084

    Article  CAS  PubMed  Google Scholar 

  28. Totrov M, Abagyan R (1997) Flexible protein-compound docking by global energy optimization in internal coordinates. Proteins (Suppl 1):215–220

  29. Eklund H, Müller-Wille P, Horjales E, Futer O, Holmquist B, Vallee BL, Höög J-O, Kaiser R, Jörnvall H (1990) Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets. Eur J Biochem 193:303–310

    Article  CAS  PubMed  Google Scholar 

  30. Totrov M, Abagyan R (2001) Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide. Biopolymers 60:124–133

    Article  CAS  PubMed  Google Scholar 

  31. Höög J-O, Eklund H, Jörnvall H (1992) A single-residue exchange gives human recombinant ββ alcohol dehydrogenase γγ isozyme properties. Eur J Biochem 205:519–526

    Article  PubMed  Google Scholar 

  32. Sanghani PC, Bosron WF, Hurley TD (2002) Human glutathione-dependent formaldehyde dehydrogenase. Structural changes associated with ternary complex formation. Biochemistry 41:15189–15194

    Article  CAS  PubMed  Google Scholar 

  33. Estonius M, Höög J-O, Danielsson O, Jörnvall H (1994) Residues specific for class III alcohol dehydrogenase. Site-directed mutagenesis of the human enzyme. Biochemistry 33:15080–15085

    Article  CAS  PubMed  Google Scholar 

  34. Engeland K, Höög J-O, Holmquist B, Estonius M, Jörnvall H, Vallee BL (1993) Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation. Proc Natl Acad Sci USA 90:2491–2494

    Article  CAS  PubMed  Google Scholar 

  35. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45:649–656

    CAS  PubMed  Google Scholar 

  36. Ohlson S (2008) Designing transient binding drugs: a new concept for drug discovery. Drug Discov Today 13:433–439

    Article  CAS  PubMed  Google Scholar 

  37. Marschall H-U, Opperman UCT, Svensson S, Nordling E, Persson B, Höög J-O, Jörnvall H (2000) Human liver class I alcohol dehydrogenase γγ isozyme: the sole cytosolic 3β-hydroxysteroid dehydrogenase of iso-bile acids. Hepatology 31:990–996

    Article  CAS  PubMed  Google Scholar 

  38. Hedberg JJ, Strömberg P, Höög J-O (1998) An attempt to transform class characteristics within the alcohol dehydrogenase family. FEBS Lett 436:67–70

    Article  CAS  PubMed  Google Scholar 

  39. Hedberg JJ, Griffiths WJ, Nilsson SJ, Höög J-O (2003) Reduction of S-nitrosoglutathione by human alcohol dehydrogenase 3 is an irreversible reaction as analysed by electrospray mass spectrometry. Eur J Biochem 270:1249–1256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Karolinska Institutet and Linköping University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Olov Höög.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellgren, M., Carlsson, J., Östberg, L.J. et al. Enrichment of ligands with molecular dockings and subsequent characterization for human alcohol dehydrogenase 3. Cell. Mol. Life Sci. 67, 3005–3015 (2010). https://doi.org/10.1007/s00018-010-0370-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0370-2

Keywords

Navigation