Skip to main content
Log in

Superactive mutants of thromboxane prostanoid receptor: functional and computational analysis of an active form alternative to constitutively active mutants

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In class A GPCRs the E/DRY motif is critical for receptor activation and function. According to experimental and computational data, R3.50 forms a double salt bridge with the adjacent E/D3.49 and E/D6.30 in helix 6, constraining the receptor in an inactive state. The disruption of this network of interactions facilitates conformational transitions that generate a signal or constitutive activity. Here we demonstrate that non-conservative substitution of either E129(3.49) or E240(6.30) of thromboxane prostanoid receptor (TP) resulted in mutants characterized by agonist-induced more efficient signaling properties, regardless of the G protein coupling. Results of computational modeling suggested a more effective interaction between Gq and the agonist-bound forms of the TP mutants, compared to the wild type. Yet, none of the mutants examined revealed any increase in basal activity, precluding their classification as constitutively active mutants. Here, we propose that these alternative active conformations might be identified as superactive mutants or SAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25:413–422

    Article  CAS  PubMed  Google Scholar 

  2. Tyndall JD, Sandilya R (2005) GPCR agonists and antagonists in the clinic. Med Chem 1:405–421

    Article  CAS  PubMed  Google Scholar 

  3. Nakahata N (2008) Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 118:18–35

    Article  CAS  PubMed  Google Scholar 

  4. Kinsella BT (2001) Thromboxane A2 signalling in humans: a ‘Tail’ of two receptors. Biochem Soc Trans 29:641–654

    Article  CAS  PubMed  Google Scholar 

  5. Laroche G, Lepine MC, Theriault C, Giguere P, Giguere V, Gallant MA, de Brum-Fernandes A, Parent JL (2005) Oligomerization of the alpha and beta isoforms of the thromboxane A2 receptor: relevance to receptor signaling and endocytosis. Cell Signal 17:1373–1383

    Article  CAS  PubMed  Google Scholar 

  6. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  Google Scholar 

  7. Fanelli F, De Benedetti PG (2005) Computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 105:3297–3351

    Article  CAS  PubMed  Google Scholar 

  8. Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A GPCRs: beyond the ground state. Mol Pharmacol 71:959–964

    Article  CAS  PubMed  Google Scholar 

  9. Vogel R, Mahalingam M, Ludeke S, Huber T, Siebert F, Sakmar TP (2008) Functional role of the “ionic lock”—an interhelical hydrogen-bond network in family A heptahelical receptors. J Mol Biol 380:648–655

    Article  CAS  PubMed  Google Scholar 

  10. Cotecchia S, Bjorklof K, Rossier O, Stanasila L, Greasley P, Fanelli F (2002) The alpha1b-adrenergic receptor subtype: molecular properties and physiological implications. J Recept Signal Transduct Res 22:1–16

    Article  CAS  PubMed  Google Scholar 

  11. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  12. Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40:7761–7772

    Article  CAS  PubMed  Google Scholar 

  13. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  CAS  PubMed  Google Scholar 

  14. Mirzadegan T, Benko G, Filipek S, Palczewski K (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42:2759–2767

    Article  CAS  PubMed  Google Scholar 

  15. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  16. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  Google Scholar 

  17. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  CAS  PubMed  Google Scholar 

  18. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    Article  CAS  PubMed  Google Scholar 

  19. Mustafi D, Palczewski K (2008) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75(1):1–12

    Article  PubMed  Google Scholar 

  20. Onaran HO, Scheer A, Cotecchia S, Costa T (2000) A look into receptor efficacy. From the signalling network of the cell to the intramolecular motion of the receptor. In: Kenakin T, Angus J (eds) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 217–280

    Google Scholar 

  21. Kenakin T (2002) Efficacy at G-protein-coupled receptors. Nat Rev Drug Discov 1:103–110

    Article  CAS  PubMed  Google Scholar 

  22. Arnis S, Fahmy K, Hofmann KP, Sakmar TP (1994) A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem 269:23879–23881

    CAS  PubMed  Google Scholar 

  23. Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1996) Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15:3566–3578

    CAS  PubMed  Google Scholar 

  24. Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1997) The activation process of the alpha1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc Natl Acad Sci USA 94:808–813

    Article  CAS  PubMed  Google Scholar 

  25. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  CAS  PubMed  Google Scholar 

  26. Madathil S, Fahmy K (2009) Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G protein-coupled receptors. J Biol Chem 284:28801–28809

    Article  CAS  PubMed  Google Scholar 

  27. Capra V, Veltri A, Foglia C, Crimaldi L, Habib A, Parenti M, Rovati GE (2004) Mutational analysis of the highly conserved ERY motif of the thromboxane A2 receptor: alternative role in G protein-coupled receptor signaling. Mol Pharmacol 66:880–889

    Article  CAS  PubMed  Google Scholar 

  28. Raimondi F, Seeber M, Benedetti PG, Fanelli F (2008) Mechanisms of inter- and intramolecular communication in GPCRs and G proteins. J Am Chem Soc 130:4310–4325

    Article  CAS  PubMed  Google Scholar 

  29. Ballesteros J, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  30. Rovati GE (1998) Ligand-binding studies: old beliefs and new strategies. Trends Pharmacol Sci 19:365–369

    Article  CAS  PubMed  Google Scholar 

  31. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  32. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    Article  CAS  PubMed  Google Scholar 

  33. Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058

    Article  CAS  PubMed  Google Scholar 

  34. Im W, Feig M, Brooks CL 3rd (2003) An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85:2900–2918

    Article  CAS  PubMed  Google Scholar 

  35. Munson PJ, Rodbard D (1980) LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    Article  CAS  PubMed  Google Scholar 

  36. De Lean A, Munson PJ, Rodbard D (1978) Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 235:E97–E102

    Google Scholar 

  37. Rovati GE, Nicosia S (1994) Lower efficacy: interaction with an inhibitory receptor or partial agonism? Trends Phramcol Sci 15:140–144

    Article  CAS  Google Scholar 

  38. Draper NR, Smith H (1966) Applied regression analysis. Wiley, New York

    Google Scholar 

  39. Walsh M, Foley JF, Kinsella BT (2000) Investigation of the role of the carboxyl-terminal tails of the alpha and beta isoforms of the human thromboxane A(2) receptor (TP) in mediating receptor: effector coupling. Biochim Biophys Acta 1496:164–182

    Article  CAS  PubMed  Google Scholar 

  40. Cotecchia S, Exum S, Caron MG, Lefkowitz RJ (1990) Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci USA 87:2896–2900

    Article  CAS  PubMed  Google Scholar 

  41. Mhaouty-Kodja S, Barak LS, Scheer A, Abuin L, Diviani D, Caron MG, Cotecchia S (1999) Constitutively active alpha-1b adrenergic receptor mutants display different phosphorylation and internalization features. Mol Pharmacol 55:339–347

    CAS  PubMed  Google Scholar 

  42. Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86:7321–7325

    Article  CAS  PubMed  Google Scholar 

  43. Costa T, Ogino Y, Munson PJ, Onaran HO, Rodbard D (1992) Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol Pharmacol 41:549–560

    CAS  PubMed  Google Scholar 

  44. Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636

    CAS  PubMed  Google Scholar 

  45. Milligan G (2003) Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol Pharmacol 64:1271–1276

    Article  CAS  PubMed  Google Scholar 

  46. Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192

    Article  CAS  PubMed  Google Scholar 

  47. Costa T, Cotecchia S (2005) Historical review: negative efficacy and the constitutive activity of G-protein-coupled receptors. Trends Pharmacol Sci 26:618–624

    Article  CAS  PubMed  Google Scholar 

  48. Kenakin T (1997) Agonist-specific receptor conformations. Trends Pharmacol Sci 18:416–417

    CAS  PubMed  Google Scholar 

  49. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    Article  CAS  PubMed  Google Scholar 

  50. Park PS, Lodowski DT, Palczewski K (2008) Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes. Annu Rev Pharmacol Toxicol 48:107–141

    Article  CAS  PubMed  Google Scholar 

  51. Chung DA, Wade SM, Fowler CB, Woods DD, Abada PB, Mosberg HI, Neubig RR (2002) Mutagenesis and peptide analysis of the DRY motif in the alpha2A adrenergic receptor: evidence for alternate mechanisms in G protein-coupled receptors. Biochem Biophys Res Commun 293:1233–1241

    Article  CAS  PubMed  Google Scholar 

  52. Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14:303–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Tommaso Costa (Laboratory of Pharmacology, Istituto Superiore di Sanità, Roma, Italy) for exhaustive and useful discussions of the data and for critical assessment of the paper. We thank Dr. Susanna Cotecchia (Département de Pharmacologie et de Toxicologie, Lausanne, Switzerland) for providing CAM of the α1B-AR. This work was supported in part by grants from EC FP6 (LSHM-CT-2004-005033 to GER). This study was also supported by a Telethon-Italy (S00068TELU to F.F.) and by a MIUR-FIRB grant (no. RBIN04CKYN to M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Enrico Rovati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio, M., Fanelli, F., Brocchetti, S. et al. Superactive mutants of thromboxane prostanoid receptor: functional and computational analysis of an active form alternative to constitutively active mutants. Cell. Mol. Life Sci. 67, 2979–2989 (2010). https://doi.org/10.1007/s00018-010-0368-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0368-9

Keywords

Navigation