Skip to main content

Advertisement

Log in

Positive regulation of apoptosis signal-regulating kinase 1 by dual-specificity phosphatase 13A

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAP kinase kinase kinase, is activated by several death stimuli and is tightly regulated by several mechanisms such as interactions with regulatory proteins and post-translational modifications. Here, we report that dual-specificity phosphatase 13A (DUSP13A) functions as a novel regulator of ASK1. DUSP13A interacts with the N-terminal domain of ASK1 and induces ASK1-mediated apoptosis through the activation of caspase-3. DUSP13A enhances ASK1 kinase activity and thus its downstream factors. Small interfering RNA (siRNA) analyses show that knock-down of DUSP13A in human neuroblastoma SK-N-SH cells reduces ASK1 kinase activity. The phosphatase activity of DUSP13A is not required for the regulation of ASK1. This regulatory action of DSUP13 on ASK1 activity involves competition with Akt1, a negative regulator of ASK1, for binding to ASK1. Taken together, this study provides novel insights into the role of DUSP13A in the precise regulation of ASK1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  2. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  CAS  PubMed  Google Scholar 

  3. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  CAS  PubMed  Google Scholar 

  4. Song JJ, Rhee JG, Suntharalingam M, Walsh SA, Spitz DR, Lee YJ (2002) Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem 277:46566–46575

    Article  CAS  PubMed  Google Scholar 

  5. Liu H, Nishitoh H, Ichijo H, Kyriakis JM (2000) Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20:2198–2208

    Article  CAS  PubMed  Google Scholar 

  6. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D (1998) Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281:1860–1863

    Article  CAS  PubMed  Google Scholar 

  7. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  CAS  PubMed  Google Scholar 

  8. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H (1998) ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2:389–395

    Article  CAS  PubMed  Google Scholar 

  9. Cho S, Ko HM, Kim JM, Lee JA, Park JE, Jang MS, Park SG, Lee DH, Ryu SE, Park BC (2004) Positive regulation of apoptosis signal-regulating kinase 1 by hD53L1. J Biol Chem 279:16050–16056

    Article  CAS  PubMed  Google Scholar 

  10. Lee JA, Park JE, Lee DH, Park SG, Myung PK, Park BC, Cho S (2008) G1 to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1. Oncogene 27:1297–1305

    Article  CAS  PubMed  Google Scholar 

  11. Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, Yoshioka K, Ichijo H (2002) Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J Biol Chem 277:40703–40709

    Article  CAS  PubMed  Google Scholar 

  12. Gotoh Y, Cooper JA (1998) Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem 273:17477–17482

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Chen J, Fu H (1999) Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci USA 96:8511–8515

    Article  CAS  PubMed  Google Scholar 

  14. Zhang R, Luo D, Miao R, Bai L, Ge Q, Sessa WC, Min W (2005) Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 24:3954–3963

    Article  CAS  PubMed  Google Scholar 

  15. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21:893–901

    Article  CAS  PubMed  Google Scholar 

  16. Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, Kuida K, Yonehara S, Ichijo H, Takeda K (2000) Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem 275:26576–26581

    Article  CAS  PubMed  Google Scholar 

  17. Tobiume K, Saitoh M, Ichijo H (2002) Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 191:95–104

    Article  CAS  PubMed  Google Scholar 

  18. Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H (2001) Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J 20:6028–6036

    Article  CAS  PubMed  Google Scholar 

  19. Chen HH, Luche R, Wei B, Tonks NK (2004) Characterization of two distinct dual specificity phosphatases encoded in alternative open reading frames of a single gene located on human chromosome 10q22.2. J Biol Chem 279:41404–41413

    Article  CAS  PubMed  Google Scholar 

  20. Kaykas A, Moon RT (2004) A plasmid-based system for expressing small interfering RNA libraries in mammalian cells. BMC Cell Biol 5:16

    Article  PubMed  Google Scholar 

  21. Zheng L, Liu J, Batalov S, Zhou D, Orth A, Ding S, Schultz PG (2004) An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci USA 101:135–140

    Article  CAS  PubMed  Google Scholar 

  22. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    CAS  PubMed  Google Scholar 

  23. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  CAS  PubMed  Google Scholar 

  24. Jeffrey KL, Camps M, Rommel C, Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 6:391–403

    Article  CAS  PubMed  Google Scholar 

  25. Teng CH, Huang WN, Meng TC (2007) Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282:28395–28407

    Article  CAS  PubMed  Google Scholar 

  26. Takagaki K, Satoh T, Tanuma N, Masuda K, Takekawa M, Shima H, Kikuchi K (2004) Characterization of a novel low-molecular-mass dual-specificity phosphatase-3 (LDP-3) that enhances activation of JNK and p38. Biochem J 383:447–455

    Article  CAS  PubMed  Google Scholar 

  27. Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M (2002) Scaffold role of a mitogen-activated protein kinase phosphatase, SKRP1, for the JNK signaling pathway. J Biol Chem 277:23919–23926

    Article  CAS  PubMed  Google Scholar 

  28. Blanchetot C, Chagnon M, Dube N, Halle M, Tremblay ML (2005) Substrate-trapping techniques in the identification of cellular PTP targets. Methods 35:44–53

    Article  CAS  PubMed  Google Scholar 

  29. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14:6–16

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A01-0385-A70604-07M7-00040B) and by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2009-0072827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayeon Cho.

Additional information

J. E. Park and B. C. Park contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.E., Park, B.C., Kim, HA. et al. Positive regulation of apoptosis signal-regulating kinase 1 by dual-specificity phosphatase 13A. Cell. Mol. Life Sci. 67, 2619–2629 (2010). https://doi.org/10.1007/s00018-010-0353-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0353-3

Keywords