Skip to main content

Advertisement

Log in

Apoptosis and apoptotic mimicry: the Leishmania connection

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Different death-styles have been described in unicellular organisms. In most cases they evolve with phenotypic features similar to apoptotic death of animal cells, such as phosphatidylserine (PS) exposure, oligonucleosomal DNA fragmentation, and loss of mitochondrial transmembrane potential, hinting that similar mechanisms operate in both situations. However, the biochemical pathways underlying death in unicellular organisms are still unclear. Host recognition of PS exposed on the surface of unicellular parasites is an important feature of the process of infection and progression of the disease. Here, we discuss data showing that entirely different mechanisms of PS exposure co-exist during the life-cycle of Leishmania amazonensis: in the case of promastigotes, a sub-population dies by apoptosis; in the case of amastigotes, the entire population exposes PS, not necessarily followed by apoptotic death. This phenomenon has been called apoptotic mimicry. The elusive caspase-like activities described in protozoa are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deponte M (2008) Programmed cell death in protists. Biochim Biophys Acta 1783:1396–1405

    Article  CAS  PubMed  Google Scholar 

  2. Soeiro MNC, Souza EM (2007) Programmed cell death and trypanosomatids: a brief review. In: Perez Martin JM (ed) Programmed cell death: from protozoan diseases to human cancers. Landes Bioscience, Austin, pp 1–15

    Google Scholar 

  3. Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  CAS  PubMed  Google Scholar 

  4. Simpson AG, Roger AJ (2004) The real “kingdoms” of eukaryotes. Curr Biol 14:R693–R696

    Article  CAS  PubMed  Google Scholar 

  5. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investig 101:890–898

    Article  CAS  PubMed  Google Scholar 

  6. Erwig LP, Henson PM (2008) Clearence of apoptotic cells by phagocytes. Cell Death Differ 15:243–250

    Article  CAS  PubMed  Google Scholar 

  7. Hoffmann PR, Kench JA, Vondracek A, Kruk E, Daleke DL, Jordan M, Marrack P, Henson PM, Fadok VA (2005) Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol 174:1393–1404

    CAS  PubMed  Google Scholar 

  8. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    Article  CAS  PubMed  Google Scholar 

  9. Alcami A, Koszinowski UH (2000) Viral mechanisms of immune evasion. Trends Microbiol 3:379–386

    Google Scholar 

  10. Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Riva S, Clerici M, Bresolin N, Sironi M (2009) Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J Exp Med 206:1395–1408

    Article  CAS  PubMed  Google Scholar 

  11. Vanlandschoot P, Leroux-Roels G (2003) Viral apoptotic mimicry: immune evasion strategy developed by the hepatitis B virus. Trends Immunol 24:144–147

    Article  CAS  PubMed  Google Scholar 

  12. de Freitas Balanco JM, Moreira ME, Bonomo A, Bozza PT, Amarante-Mendes G, Pirmez C, Barcinski MA (2001) Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol 11:1870–1873

    Article  PubMed  Google Scholar 

  13. Seabra SH, Souza W, DaMatta RA (2004) Toxoplasma gondii exposes phosphatidylserine inducing a TGF-b1 autocrine effect orchestrating macrophage evasion. Biochem Biophys Res Commun 324:744–752

    Article  CAS  PubMed  Google Scholar 

  14. DaMatta RA, Seabra SH, Deolindo P, Arnholdt ACV, Manhães L, Goldenberg S, Souza W (2007) Trypanosoma cruzi exposes phosphatidylserine as an evasion mechanism. FEMS Microbiol Lett 266:29–33

    Article  CAS  PubMed  Google Scholar 

  15. Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    Article  CAS  PubMed  Google Scholar 

  16. Soares MM, King SW, Thorpe PE (2008) Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat Med 14:1357–1362

    Article  CAS  PubMed  Google Scholar 

  17. Gregory CD, Devitt A (2004) The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 113:1–14

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Tibrewal N, Birge RB (2006) Phospahatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 16:190–197

    Google Scholar 

  19. Barcinski MA, Moreira ME, Balanco JM, Wanderley JL, Bonomo AC (2003) The role of apoptotic mimicry in host-parasite interplay: is death the only alternative for altruistic behavior? Kinetoplastid Biol Dis 2:6

    Article  PubMed  Google Scholar 

  20. Callahan MK, Popernack PM, Tsutsui S, Truong L, Sclegel RA, Henderson AJ (2003) Phosphatidylserine on HIV envelope is a co-factor for infection of monocytic cells. J Immunol 170:4840–4845

    CAS  PubMed  Google Scholar 

  21. Wanderley JLM, Pinto da Silva LH, Deolindo P, Soong L, Borges VM, Prates DB, Almeida de Souza AP, Barral A, Balanco JMF, Nascimento MTC, Saraiva EM, Barcinski MA (2009) Cooperation between apoptotic and viable metacyclics enhances the pathogenesis of leishmaniasis. PloS One 4:e5733

    Article  PubMed  Google Scholar 

  22. Ravanat C, Archipoff G, Beretz A, Freund G, Cazenave J-P, Freyssinet J-M (1992) Use of annexin V to demonstrate the role of phosphatidylserine exposure in the maintenance of haemostatic balance by endothelial cells. Biochem J 282:7–13

    CAS  PubMed  Google Scholar 

  23. Driesen RB, Dispersyn GD, Verheyen FK, van den Eijnde SM, Hofstra L, Thoné F, Dijkstra P, Debie W, Borgers M, Ramaekers FC (2005) Partial cell fusion: a newly recognized type of communication between de differentiating cardiomyocytes and fibroblasts. Cardiovasc Res 68:37–46

    Article  CAS  PubMed  Google Scholar 

  24. Fischer K, Voelki S, Berger J, Andreesen R, Pomorski T, Mackensen A (2006) Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108:4094–4101

    Article  CAS  PubMed  Google Scholar 

  25. Chunk S-M, Bae O-N, Lim K-M, Noh J-Y, Lee M-Y, Jung Y-S, Chunk J-H (2006) Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler Thromb Vasc Biol 27:414–421

    Article  Google Scholar 

  26. Willekens FL, Were JM, Groenen-Döpp YA, Roerdinkholder-Stoelwinder B, de Pauw B, Bosman GJ (2008) Erythrocyte vesiculation: a self-protective mechanism? Br J Haematol 141:549–556

    Article  CAS  PubMed  Google Scholar 

  27. Wanderley JLM, Benjamin A, Real F, Bonomo A, Moreira MEC, Barcinski MA (2005) Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay. Braz J Med Biol Res 38:1–6

    Article  Google Scholar 

  28. Vannier-Santos MA, Martiny A, de Souza W (2002) Cell biology of Leishmania spp.: invading and evading. Curr Pharm Des 8:297–318

    Article  CAS  PubMed  Google Scholar 

  29. Real F, Pouchelet M, Rabinovitch M (2008) Leishmania (L.) amazonensis: fusion between parasitophorous vacuoles in infected bone-marrow derived mouse macrophages. Exp Parasitol 119:15–23

    Article  CAS  PubMed  Google Scholar 

  30. Sudhandiran G, Shaha C (2003) Antimonial induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 278:25120–25132

    Google Scholar 

  31. Moreira ME, Barcinski MA (2004) Apoptotic cell and phagocyte interplay: recognition and consequences in different cell systems. An Acad Bras Cienc 76:93–115

    CAS  PubMed  Google Scholar 

  32. Wanderley JLM, Moreira ME, Benjamin A, Bonomo AC, Barcinski MA (2006) Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 176:1834–1839

    CAS  PubMed  Google Scholar 

  33. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    CAS  PubMed  Google Scholar 

  34. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  35. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Inter Immunol 21:317–337

    Article  CAS  Google Scholar 

  36. Bortoluci KR, Medzhitov R (2010) Control of infection by pyroptosis and autophagy: role of TLR and NLR signaling. Cell Mol Life Sci (this issue)

  37. Bates PA (2007) Transmission of leishmanias metacyclic pronmastigotes by phlebotomine sand flies. Int J Parasitol 37:1097–1106

    Article  CAS  PubMed  Google Scholar 

  38. Soong L (2007) Modulation of dendritic cell function by Leishmania parasites. J Immunol 180:4355–4360

    Google Scholar 

  39. Kima PE (2007) The amastigotes forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int J Parasitol 37:1087–1096

    Article  CAS  PubMed  Google Scholar 

  40. Van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Lasky T (2004) Cutting edge: neutrophil granulocytes serves as a vector for Leishmania entry into macrophages. J Immunol 173:6521–6525

    PubMed  Google Scholar 

  41. Veras PS, de Chastellier C, Rabinovitch M (1992) Transfer of zymosan (yeast cell walls) to the parasitophorous vacuoles of macrophages infected with Leishmania amazonensis. J Exp Med 176:639–646

    Article  CAS  PubMed  Google Scholar 

  42. Wilson J, Huynh C, Kennedy KA, ward DM, Kaplan J, Aderem A, Andrews NW (2008) Control of parasitophorous vacuole expansion by LYST/Beige restricts the intracellular growth of Leishmania amazonensis. PloS Pathog 4:e1000179

    Article  PubMed  Google Scholar 

  43. DosReis GA, Barcinski MA (2001) Apoptosis and parasitism: from the parasite to the host immune response. Adv Parasitol 49:133–136

    Article  CAS  PubMed  Google Scholar 

  44. Nguewa PA, Fuertes MA, Valladares B, Alonso C, Pérez JM (2004) Programmed cell death in trypanosomatids: a way to maximize their biological fitness? Trends Parasitol 20:375–380

    Article  PubMed  Google Scholar 

  45. Welburn S, Barcinski M, Williams G (1997) Programmed cell death in trypanosomatids. Parasitol Today 13:22–26

    Article  CAS  PubMed  Google Scholar 

  46. van Zandbergen G, Bollinger A, Wenzel A, Kamhawi S, Vol lR, Klinger M, Müller A, Hölscher C, Herrmann M, Sacks D, Solbach W, Laskay T (2006) Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proc Natl Acad Sci USA 103:13837–13842

    Article  PubMed  Google Scholar 

  47. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    CAS  PubMed  Google Scholar 

  48. Vercammen D, Declercq W, Vandenabeele P, Van Breusegen F (2007) Are metacaspases caspases? J Cell Biol 179:375–380

    Article  CAS  PubMed  Google Scholar 

  49. González IJ, Desponds C, Schaff C, Mottram JC, Fasel N (2007) Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific activity. Int J Parasitol 37:161–172

    Article  PubMed  Google Scholar 

  50. Lee N, Gannavaram S, Selvapandiyan A, Debrabant A (2007) Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania. Eukaryot Cell 6:1745–1757

    Article  CAS  PubMed  Google Scholar 

  51. Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC (2002) On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrial permeabilization. Cell Death Diff 9:65–81

    Article  CAS  Google Scholar 

  52. Das M, Mukherjee SB, Shaha C (2001) Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 114:2461–2469

    CAS  PubMed  Google Scholar 

  53. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 9:53–64

    Article  CAS  PubMed  Google Scholar 

  54. Roy A, Ganguly A, BoseDasgupta S, Das BB, Pal C, Jaisankar P, Majumdar HK (2008) Motochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3′-Diidolylmethane through inhibition of F0F-1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharm 74:1292–1307

    Article  CAS  Google Scholar 

  55. Szallies A, Kubata BK, Duszenko M (2002) A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett 517:144–150

    Article  CAS  PubMed  Google Scholar 

  56. Ambit A, Fasel N, Coombs GH, Mottram JC (2007) An essential role for the Leishmania major metacaspse in cell cycle progression. Cell Death Differ 15:113–122

    Article  PubMed  Google Scholar 

  57. Gevaert K, Van Damme P, Ghesquiere B, Vandekerckhove J (2006) Protein processing and other modifications analyzed by diagonal peptide chromatography. Biochem Biophys Acta 1764:1801–1810

    CAS  PubMed  Google Scholar 

  58. Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  CAS  PubMed  Google Scholar 

  59. Reape T, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  60. Holzmuller P, Sereno D, Cavaleyra M, Mangot I, Dalouede S, Vincendeau P, Lemesre JL (2002) Nitric oxide mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes. Infect Immun 70:3727–3735

    Article  CAS  PubMed  Google Scholar 

  61. Holzmuller P, Bras-Gonçalves R, Lemesre JL (2006) Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania. Parasitology 132:S19–S32

    Google Scholar 

  62. Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858

    Article  CAS  PubMed  Google Scholar 

  63. Holzmuller P, Cavaleyra M, Moreaux J, Kovacic R, Vincendeau P, Papierok G, Lemesra JL (2005) Lymphocytes of dogs immunized with purified excreted–secreted antigens of Leishmania infantum co-incubated with Leishmania-infected macrophages produce IFN gamma resulting in nitric oxide mediated amastigote apoptosis. Vet Immunol Immunopathol 106:247–257

    Article  CAS  PubMed  Google Scholar 

  64. Jiaxiang JI, Sun J, Qi H, Soong L (2002) Analysis of T helper cell responses during infection with Leishmania amazonensis. Am J Trop Med Hyg 66:338–345

    Google Scholar 

  65. Qi H, Ji J, Wanasen N, Soong L (2004) Enhanced replication of Leishmania amazonensis amastigotes in gamma interferon-stimulated murine macrophages: implications for the pathogenesis of cutaneous leishmaniasis. Infect Immun 72:988–995

    Article  CAS  PubMed  Google Scholar 

  66. Duszenko M, Figarella K, MacLeod EW, Welburn SC (2006) Death of a trypanososme: a selfish altruism. Trends Parasitol 22:536–542

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello A. Barcinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanderley, J.L.M., Barcinski, M.A. Apoptosis and apoptotic mimicry: the Leishmania connection. Cell. Mol. Life Sci. 67, 1653–1659 (2010). https://doi.org/10.1007/s00018-010-0291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0291-0

Keywords

Navigation