Skip to main content
Log in

Control of death receptor ligand activity by posttranslational modifications

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The death receptor ligands are involved in many physiological and pathological processes involving triggering of apoptosis, inflammation, proliferation, and activation. The expression of these molecules is reported to be tightly regulated at the transcriptional level. However, over the last few years, an increasing number of data demonstrated that the control of transcription is only one of the mechanisms that manage the expression of the death receptor ligands. Thus, this review is focused on posttranslational regulation of the three main members of this family, namely FasL, TNF-α, and TRAIL. We discuss here the importance of distribution, storage, and degranulation of these molecules, as well as their shedding by proteases on the control of death receptor ligands expression and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  2. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  PubMed  CAS  Google Scholar 

  3. Gruss HJ, Dower SK (1995) Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 85:3378–3404

    PubMed  CAS  Google Scholar 

  4. Baker SJ, Reddy EP (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17:3261–3270

    Article  PubMed  Google Scholar 

  5. Gruss HJ (1996) Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. Int J Clin Lab Res 26:143–159

    Article  PubMed  CAS  Google Scholar 

  6. Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213

    Article  PubMed  CAS  Google Scholar 

  7. Bonfoco E, Stuart PM, Brunner T, Lin T, Griffith TS, Gao Y, Nakajima H, Henkart PA, Ferguson TA, Green DR (1998) Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 9:711–720

    Article  PubMed  CAS  Google Scholar 

  8. French LE, Hahne M, Viard I, Radlgruber G, Zanone R, Becker K, Muller C, Tschopp J (1996) Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 133:335–343

    Article  PubMed  CAS  Google Scholar 

  9. Brunner T, Yoo NJ, LaFace D, Ware CF, Green DR (1996) Activation-induced cell death in murine T cell hybridomas. Differential regulation of Fas (CD95) versus Fas ligand expression by cyclosporin A and FK506. Int Immunol 8:1017–1026

    Article  PubMed  CAS  Google Scholar 

  10. Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P (2002) Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 14:354–359

    Article  PubMed  CAS  Google Scholar 

  11. Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA (1996) CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5:7–16

    Article  PubMed  CAS  Google Scholar 

  12. Maksimow M, Soderstrom TS, Jalkanen S, Eriksson JE, Hanninen A (2006) Fas costimulation of naive CD4 T cells is controlled by NF-kappaB signaling and caspase activity. J Leukoc Biol 79:369–377

    Article  PubMed  CAS  Google Scholar 

  13. Beutler B, Cerami A (1989) The biology of cachectin/TNF: a primary mediator of the host response. Annu Rev Immunol 7:625–655

    PubMed  CAS  Google Scholar 

  14. Decker T, Lohmann-Matthes ML, Gifford GE (1987) Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J Immunol 138:957–962

    PubMed  CAS  Google Scholar 

  15. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    Article  PubMed  CAS  Google Scholar 

  16. Zhang C, Zhang J, Niu J, Zhou Z, Zhang J, Tian Z (2008) Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum Immunol 69:490–500

    Article  PubMed  CAS  Google Scholar 

  17. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163:1906–1913

    PubMed  CAS  Google Scholar 

  18. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 189:1451–1460

    Article  PubMed  CAS  Google Scholar 

  19. Halaas O, Vik R, Ashkenazi A, Espevik T (2000) Lipopolysaccharide induces expression of APO2 ligand/TRAIL in human monocytes and macrophages. Scand J Immunol 51:244–250

    Article  PubMed  CAS  Google Scholar 

  20. Song K, Chen Y, Goke R, Wilmen A, Seidel C, Goke A, Hilliard B, Chen Y (2000) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 191:1095–1104

    Article  PubMed  CAS  Google Scholar 

  21. Secchiero P, Zauli G (2008) Tumor-necrosis-factor-related apoptosis-inducing ligand and the regulation of hematopoiesis. Curr Opin Hematol 15:42–48

    Article  PubMed  CAS  Google Scholar 

  22. Ishikawa E, Nakazawa M, Yoshinari M, Minami M (2005) Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice. J Virol 79:7658–7663

    Article  PubMed  CAS  Google Scholar 

  23. Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL–potential and risks of a novel anticancer therapy. J Mol Med 85:923–935

    Article  PubMed  CAS  Google Scholar 

  24. Koschny R, Holland H, Sykora J, Erdal H, Krupp W, Bauer M, Bockmuehl U, Ahnert P, Meixensberger J, Stremmel W, Walczak H, Ganten TM (2009) Bortezomib sensitizes primary human esthesioneuroblastoma cells to TRAIL-induced apoptosis. J Neurooncol, (in press). doi:10.1007/s11060-009-0010-6

  25. Syed V, Mukherjee K, Godoy-Tundidor S, Ho SM (2007) Progesterone induces apoptosis in TRAIL-resistant ovarian cancer cells by circumventing c-FLIPL overexpression. J Cell Biochem 102:442–452

    Article  PubMed  CAS  Google Scholar 

  26. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  PubMed  CAS  Google Scholar 

  27. Ganten TM, Koschny R, Sykora J, Schulze-Bergkamen H, Buchler P, Haas TL, Schader MB, Untergasser A, Stremmel W, Walczak H (2006) Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 12:2640–2646

    Article  PubMed  CAS  Google Scholar 

  28. Sah NK, Munshi A, Kurland JF, McDonnell TJ, Su B, Meyn RE (2003) Translation inhibitors sensitize prostate cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by activating c-Jun N-terminal kinase. J Biol Chem 278:20593–20602

    Article  PubMed  CAS  Google Scholar 

  29. Verbrugge I, de Vries E, Tait SW, Wissink EH, Walczak H, Verheij M, Borst J (2008) Ionizing radiation modulates the TRAIL death-inducing signaling complex, allowing bypass of the mitochondrial apoptosis pathway. Oncogene 27:574–584

    Article  PubMed  CAS  Google Scholar 

  30. Wissink EH, Verbrugge I, Vink SR, Schader MB, Schaefer U, Walczak H, Borst J, Verheij M (2006) TRAIL enhances efficacy of radiotherapy in a p53 mutant, Bcl-2 overexpressing lymphoid malignancy. Radiother Oncol 80:214–222

    Article  PubMed  CAS  Google Scholar 

  31. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6:564–567

    Article  PubMed  CAS  Google Scholar 

  32. Zheng SJ, Wang P, Tsabary G, Chen YH (2004) Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest 113:58–64

    PubMed  CAS  Google Scholar 

  33. Shudo K, Kinoshita K, Imamura R, Fan H, Hasumoto K, Tanaka M, Nagata S, Suda T (2001) The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity. Eur J Immunol 31:2504–2511

    Article  PubMed  CAS  Google Scholar 

  34. Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S (1997) Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 186:2045–2050

    Article  PubMed  CAS  Google Scholar 

  35. Brunner T, Wasem C, Torgler R, Cima I, Jakob S, Corazza N (2003) Fas (CD95/Apo-1) ligand regulation in T cell homeostasis, cell-mediated cytotoxicity and immune pathology. Semin Immunol 15:167–176

    Article  PubMed  CAS  Google Scholar 

  36. Kavurma MM, Bennett MR (2008) Expression, regulation and function of trail in atherosclerosis. Biochem Pharmacol 75:1441–1450

    Article  PubMed  CAS  Google Scholar 

  37. Kavurma MM, Khachigian LM (2003) Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ 10:36–44

    Article  PubMed  CAS  Google Scholar 

  38. Liu H, Sidiropoulos P, Song G, Pagliari LJ, Birrer MJ, Stein B, Anrather J, Pope RM (2000) TNF-alpha gene expression in macrophages: regulation by NF-kappa B is independent of c-Jun or C/EBP beta. J Immunol 164:4277–4285

    PubMed  CAS  Google Scholar 

  39. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192

    Article  PubMed  CAS  Google Scholar 

  40. Kauma SW, Huff TF, Hayes N, Nilkaeo A (1999) Placental Fas ligand expression is a mechanism for maternal immune tolerance to the fetus. J Clin Endocrinol Metab 84:2188–2194

    Article  PubMed  CAS  Google Scholar 

  41. O’Connell J, Bennett MW, O’Sullivan GC, O’Callaghan J, Collins JK, Shanahan F (1999) Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege. Clin Diagn Lab Immunol 6:457–463

    PubMed  Google Scholar 

  42. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F (1996) The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184:1075–1082

    Article  PubMed  Google Scholar 

  43. Xerri L, Devilard E, Hassoun J, Mawas C, Birg F (1997) Fas ligand is not only expressed in immune privileged human organs but is also coexpressed with Fas in various epithelial tissues. Mol Pathol 50:87–91

    Article  PubMed  CAS  Google Scholar 

  44. Blott EJ, Bossi G, Clark R, Zvelebil M, Griffiths GM (2001) Fas ligand is targeted to secretory lysosomes via a proline-rich domain in its cytoplasmic tail. J Cell Sci 114:2405–2416

    PubMed  CAS  Google Scholar 

  45. Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96

    Article  PubMed  CAS  Google Scholar 

  46. Qian J, Chen W, Lettau M, Podda G, Zornig M, Kabelitz D, Janssen O (2006) Regulation of FasL expression: a SH3 domain containing protein family involved in the lysosomal association of FasL. Cell Signal 18:1327–1337

    Article  PubMed  CAS  Google Scholar 

  47. Montel AH, Bochan MR, Hobbs JA, Lynch DH, Brahmi Z (1995) Fas involvement in cytotoxicity mediated by human NK cells. Cell Immunol 166:236–246

    Article  PubMed  CAS  Google Scholar 

  48. Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S (1995) Expression of the Fas ligand in cells of T cell lineage. J Immunol 154:3806–3813

    PubMed  CAS  Google Scholar 

  49. He JS, Ostergaard HL (2007) CTLs contain and use intracellular stores of FasL distinct from cytolytic granules. J Immunol 179:2339–2348

    PubMed  CAS  Google Scholar 

  50. Hanna WL, Turbov JM, Jackman HL, Tan F, Froelich CJ (1994) Dominant chymotrypsin-like esterase activity in human lymphocyte granules is mediated by the serine carboxypeptidase called cathepsin A-like protective protein. J Immunol 153:4663–4672

    PubMed  CAS  Google Scholar 

  51. Lettau M, Schmidt H, Kabelitz D, Janssen O (2007) Secretory lysosomes and their cargo in T and NK cells. Immunol Lett 108:10–19

    Article  PubMed  CAS  Google Scholar 

  52. Jenne DE, Tschopp J (1988) Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation. Immunol Rev 103:53–71

    Article  PubMed  CAS  Google Scholar 

  53. Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, Slot JW, Geuze HJ (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 173:1099–1109

    Article  PubMed  CAS  Google Scholar 

  54. Puri N, Roche PA (2008) Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci USA 105:2580–2585

    Article  PubMed  Google Scholar 

  55. Bossi G, Griffiths GM (2005) CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin Immunol 17:87–94

    Article  PubMed  CAS  Google Scholar 

  56. Kojima Y, Kawasaki-Koyanagi A, Sueyoshi N, Kanai A, Yagita H, Okumura K (2002) Localization of Fas ligand in cytoplasmic granules of CD8+ cytotoxic T lymphocytes and natural killer cells: participation of Fas ligand in granule exocytosis model of cytotoxicity. Biochem Biophys Res Commun 296:328–336

    Article  PubMed  CAS  Google Scholar 

  57. Kassahn D, Nachbur U, Conus S, Micheau O, Schneider P, Simon HU, Brunner T (2009) Distinct requirements for activation-induced cell surface expression of preformed Fas/CD95 ligand and cytolytic granule markers in T cells. Cell Death Differ 16:115–124

    Article  PubMed  CAS  Google Scholar 

  58. Schmidt H, Gelhaus C, Lucius R, Nebendahl M, Leippe M, Janssen O (2009) Enrichment and analysis of secretory lysosomes from lymphocyte populations. BMC Immunol 10:41

    Article  PubMed  CAS  Google Scholar 

  59. Pond L, Kuhn LA, Teyton L, Schutze MP, Tainer JA, Jackson MR, Peterson PA (1995) A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J Biol Chem 270:19989–19997

    Article  PubMed  CAS  Google Scholar 

  60. Trowbridge IS, Collawn JF, Hopkins CR (1993) Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol 9:129–161

    Article  PubMed  CAS  Google Scholar 

  61. Nachbur U, Kassahn D, Yousefi S, Legler DF, Brunner T (2006) Posttranscriptional regulation of Fas (CD95) ligand killing activity by lipid rafts. Blood 107:2790–2796

    Article  PubMed  CAS  Google Scholar 

  62. Linkermann A, Gelhaus C, Lettau M, Qian J, Kabelitz D, Janssen O (2009) Identification of interaction partners for individual SH3 domains of Fas ligand associated members of the PCH protein family in T lymphocytes. Biochim Biophys Acta 1794:168–176

    PubMed  CAS  Google Scholar 

  63. Voss M, Lettau M, Janssen O (2009) Identification of SH3 domain interaction partners of human FasL (CD178) by phage display screening. BMC Immunol 10:53

    Article  PubMed  CAS  Google Scholar 

  64. Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, Kabelitz D, Feller SM, Janssen O (2001) Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor. FEBS Lett 509:255–262

    Article  PubMed  CAS  Google Scholar 

  65. Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, Borkhardt A, Kabelitz D, Janssen O (2002) Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178). FEBS Lett 519:50–58

    Article  PubMed  CAS  Google Scholar 

  66. Hane M, Lowin B, Peitsch M, Becker K, Tschopp J (1995) Interaction of peptides derived from the Fas ligand with the Fyn-SH3 domain. FEBS Lett 373:265–268

    Article  PubMed  CAS  Google Scholar 

  67. Lettau M, Qian J, Linkermann A, Latreille M, Larose L, Kabelitz D, Janssen O (2006) The adaptor protein Nck interacts with Fas ligand: Guiding the death factor to the cytotoxic immunological synapse. Proc Natl Acad Sci USA 103:5911–5916

    Article  PubMed  CAS  Google Scholar 

  68. Baum W, Kirkin V, Fernandez SB, Pick R, Lettau M, Janssen O, Zornig M (2005) Binding of the intracellular Fas ligand (FasL) domain to the adaptor protein PSTPIP results in a cytoplasmic localization of FasL. J Biol Chem 280:40012–40024

    Article  PubMed  CAS  Google Scholar 

  69. Zuccato E, Blott EJ, Holt O, Sigismund S, Shaw M, Bossi G, Griffiths GM (2007) Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation. J Cell Sci 120:191–199

    Article  PubMed  CAS  Google Scholar 

  70. Thornhill PB, Cohn JB, Stanford WL, Desbarats J (2008) The adaptor protein Grb2 regulates cell surface Fas ligand in Schwann cells. Biochem Biophys Res Commun 376:341–346

    Article  PubMed  CAS  Google Scholar 

  71. Olszewski MB, Groot AJ, Dastych J, Knol EF (2007) TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J Immunol 178:5701–5709

    PubMed  CAS  Google Scholar 

  72. Olszewski MB, Trzaska D, Knol EF, Adamczewska V, Dastych J (2006) Efficient sorting of TNF-alpha to rodent mast cell granules is dependent on N-linked glycosylation. Eur J Immunol 36:997–1008

    Article  PubMed  CAS  Google Scholar 

  73. Beil WJ, Login GR, Aoki M, Lunardi LO, Morgan ES, Galli SJ, Dvorak AM (1996) Tumor necrosis factor alpha immunoreactivity of rat peritoneal mast cell granules decreases during early secretion induced by compound 48/80: an ultrastructural immunogold morphometric analysis. Int Arch Allergy Immunol 109:383–389

    Article  PubMed  CAS  Google Scholar 

  74. Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88:4220–4224

    Article  PubMed  CAS  Google Scholar 

  75. Shurety W, Merino-Trigo A, Brown D, Hume DA, Stow JL (2000) Localization and post-Golgi trafficking of tumor necrosis factor-alpha in macrophages. J Interferon Cytokine Res 20:427–438

    Article  PubMed  CAS  Google Scholar 

  76. Cassatella MA, Huber V, Calzetti F, Margotto D, Tamassia N, Peri G, Mantovani A, Rivoltini L, Tecchio C (2006) Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intracellular pool that is readily mobilizable following exposure to proinflammatory mediators. J Leukoc Biol 79:123–132

    Article  PubMed  CAS  Google Scholar 

  77. Kemp TJ, Ludwig AT, Earel JK, Moore JM, Vanoosten RL, Moses B, Leidal K, Nauseef WM, Griffith TS (2005) Neutrophil stimulation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) results in the release of functional soluble TRAIL/Apo-2L. Blood 106:3474–3482

    Article  PubMed  CAS  Google Scholar 

  78. Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, Pineiro A, Larrad L, Alava MA, Naval J, Anel A (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744

    PubMed  CAS  Google Scholar 

  79. Simons MP, Leidal KG, Nauseef WM, Griffith TS (2008) TNF-related apoptosis-inducing ligand (TRAIL) is expressed throughout myeloid development, resulting in a broad distribution among neutrophil granules. J Leukoc Biol 83:621–629

    Article  PubMed  CAS  Google Scholar 

  80. Simons MP, Moore JM, Kemp TJ, Griffith TS (2007) Identification of the mycobacterial subcomponents involved in the release of tumor necrosis factor-related apoptosis-inducing ligand from human neutrophils. Infect Immun 75:1265–1271

    Article  PubMed  CAS  Google Scholar 

  81. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  82. Shogomori H, Brown DA (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol Chem 384:1259–1263

    Article  PubMed  CAS  Google Scholar 

  83. Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

    Article  PubMed  CAS  Google Scholar 

  84. Doan JE, Windmiller DA, Riches DW (2004) Differential regulation of TNF-R1 signaling: lipid raft dependency of p42mapk/erk2 activation, but not NF-kappaB activation. J Immunol 172:7654–7660

    PubMed  CAS  Google Scholar 

  85. Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C (2003) Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18:655–664

    Article  PubMed  CAS  Google Scholar 

  86. Cahuzac N, Baum W, Kirkin V, Conchonaud F, Wawrezinieck L, Marguet D, Janssen O, Zornig M, Hueber AO (2006) Fas ligand is localized to membrane rafts, where it displays increased cell death-inducing activity. Blood 107:2384–2391

    Article  PubMed  CAS  Google Scholar 

  87. Henkler F, Behrle E, Dennehy KM, Wicovsky A, Peters N, Warnke C, Pfizenmaier K, Wajant H (2005) The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability. J Cell Biol 168:1087–1098

    Article  PubMed  CAS  Google Scholar 

  88. Gajate C, Mollinedo F (2005) Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280:11641–11647

    Article  PubMed  CAS  Google Scholar 

  89. Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F, Tinel A, Deperthes D, Calderara S, Schulthess T, Engel J, Schneider P, Tschopp J (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23:1428–1440

    Article  PubMed  CAS  Google Scholar 

  90. Eramo A, Sargiacomo M, Ricci-Vitiani L, Todaro M, Stassi G, Messina CG, Parolini I, Lotti F, Sette G, Peschle C, De Maria R (2004) CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eur J Immunol 34:1930–1940

    Article  PubMed  CAS  Google Scholar 

  91. Legembre P, Daburon S, Moreau P, Moreau JF, Taupin JL (2006) Modulation of Fas-mediated apoptosis by lipid rafts in T lymphocytes. J Immunol 176:716–720

    PubMed  CAS  Google Scholar 

  92. Muppidi JR, Siegel RM (2004) Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat Immunol 5:182–189

    Article  PubMed  CAS  Google Scholar 

  93. Treede I, Braun A, Jeliaskova P, Giese T, Fullekrug J, Griffiths G, Stremmel W, Ehehalt R (2009) TNF-alpha-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol 9:53

    Article  PubMed  CAS  Google Scholar 

  94. Rossin A, Derouet M, Abdel-Sater F, Hueber AO (2009) Palmitoylation of the TRAIL receptor DR4 confers an efficient TRAIL-induced cell death signalling. Biochem J 419: 185–92, (2 p following 192)

    Google Scholar 

  95. Chakrabandhu K, Herincs Z, Huault S, Dost B, Peng L, Conchonaud F, Marguet D, He HT, Hueber AO (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26:209–220

    Article  PubMed  CAS  Google Scholar 

  96. Higuchi H, Yamashita T, Yoshikawa H, Tohyama M (2003) PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts. EMBO J 22:1790–1800

    Article  PubMed  CAS  Google Scholar 

  97. Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, Stuermer CA, Herzog V, Tikkanen R (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378:509–518

    Article  PubMed  CAS  Google Scholar 

  98. Tanaka M, Itai T, Adachi M, Nagata S (1998) Downregulation of Fas ligand by shedding. Nat Med 4:31–36

    Article  PubMed  CAS  Google Scholar 

  99. Matute-Bello G, Winn RK, Jonas M, Chi EY, Martin TR, Liles WC (2001) Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol 158:153–161

    PubMed  CAS  Google Scholar 

  100. Serrao KL, Fortenberry JD, Owens ML, Harris FL, Brown LA (2001) Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand. Am J Physiol Lung Cell Mol Physiol 280:L298–L305

    PubMed  CAS  Google Scholar 

  101. Song E, Chen J, Ouyang N, Su F, Wang M, Heemann U (2001) Soluble Fas ligand released by colon adenocarcinoma cells induces host lymphocyte apoptosis: an active mode of immune evasion in colon cancer. Br J Cancer 85:1047–1054

    Article  PubMed  CAS  Google Scholar 

  102. O’Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461:659–663

    Article  CAS  Google Scholar 

  103. Schulte M, Reiss K, Lettau M, Maretzky T, Ludwig A, Hartmann D, de Strooper B, Janssen O, Saftig P (2007) ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ 14:1040–1049

    PubMed  CAS  Google Scholar 

  104. Knox PG, Milner AE, Green NK, Eliopoulos AG, Young LS (2003) Inhibition of metalloproteinase cleavage enhances the cytotoxicity of Fas ligand. J Immunol 170:677–685

    PubMed  CAS  Google Scholar 

  105. Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53:45–53

    Article  PubMed  CAS  Google Scholar 

  106. Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M (1990) A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 63:251–258

    Article  PubMed  CAS  Google Scholar 

  107. Borsotti C, Franklin AR, Lu SX, Kim TD, Smith OM, Suh D, King CG, Chow A, Liu C, Alpdogan O, van den Brink MR (2007) Absence of donor T-cell-derived soluble TNF decreases graft-versus-host disease without impairing graft-versus-tumor activity. Blood 110:783–786

    Article  PubMed  CAS  Google Scholar 

  108. Muller S, Rihs S, Dayer Schneider JM, Paredes BE, Seibold I, Brunner T, Mueller C (2009) Soluble TNF-alpha but not transmembrane TNF-alpha sensitizes T cells for enhanced activation-induced cell death. Eur J Immunol 39:3171–3180. doi:10.1002/eji.200939554

    Article  PubMed  CAS  Google Scholar 

  109. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411–452

    Article  PubMed  CAS  Google Scholar 

  110. Mueller C, Corazza N, Trachsel-Loseth S, Eugster HP, Buhler-Jungo M, Brunner T, Imboden MA (1999) Noncleavable transmembrane mouse tumor necrosis factor-alpha (TNFalpha) mediates effects distinct from those of wild-type TNFalpha in vitro and in vivo. J Biol Chem 274:38112–38118

    Article  PubMed  CAS  Google Scholar 

  111. Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS, Torrance DS, Otten-Evans C, Greenstreet T, Weerawarna K, Kronheim SR, Petersen M, Gerhart M, Koslosky CJ, March CJ, Black RA (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 370:218–220

    Article  PubMed  CAS  Google Scholar 

  112. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733

    Article  PubMed  CAS  Google Scholar 

  113. Reddy P, Slack JL, Davis R, Cerretti DP, Kozlosky CJ, Blanton RA, Shows D, Peschon JJ, Black RA (2000) Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem 275:14608–14614

    Article  PubMed  CAS  Google Scholar 

  114. Itai T, Tanaka M, Nagata S (2001) Processing of tumor necrosis factor by the membrane-bound TNF-alpha-converting enzyme, but not its truncated soluble form. Eur J Biochem 268:2074–2082

    Article  PubMed  CAS  Google Scholar 

  115. Zheng Y, Saftig P, Hartmann D, Blobel C (2004) Evaluation of the contribution of different ADAMs to tumor necrosis factor alpha (TNFalpha) shedding and of the function of the TNFalpha ectodomain in ensuring selective stimulated shedding by the TNFalpha convertase (TACE/ADAM17). J Biol Chem 279:42898–42906

    Article  PubMed  CAS  Google Scholar 

  116. Condon TP, Flournoy S, Sawyer GJ, Baker BF, Kishimoto TK, Bennett CF (2001) ADAM17 but not ADAM10 mediates tumor necrosis factor-alpha and L-selectin shedding from leukocyte membranes. Antisense Nucleic Acid Drug Dev 11:107–116

    Article  PubMed  CAS  Google Scholar 

  117. Lunn CA, Fan X, Dalie B, Miller K, Zavodny PJ, Narula SK, Lundell D (1997) Purification of ADAM 10 from bovine spleen as a TNFalpha convertase. FEBS Lett 400:333–335

    Article  PubMed  CAS  Google Scholar 

  118. Rosendahl MS, Ko SC, Long DL, Brewer MT, Rosenzweig B, Hedl E, Anderson L, Pyle SM, Moreland J, Meyers MA, Kohno T, Lyons D, Lichenstein HS (1997) Identification and characterization of a pro-tumor necrosis factor-alpha-processing enzyme from the ADAM family of zinc metalloproteases. J Biol Chem 272:24588–24593

    Article  PubMed  CAS  Google Scholar 

  119. Mezyk-Kopec R, Bzowska M, Stalinska K, Chelmicki T, Podkalicki M, Jucha J, Kowalczyk K, Mak P, Bereta J (2009) Identification of ADAM10 as a major TNF sheddase in ADAM17-deficient fibroblasts. Cytokine 46:309–315

    Article  PubMed  CAS  Google Scholar 

  120. Le Gall SM, Bobe P, Reiss K, Horiuchi K, Niu XD, Lundell D, Gibb DR, Conrad D, Saftig P, Blobel CP (2009) ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Mol Biol Cell 20:1785–1794

    Article  PubMed  CAS  Google Scholar 

  121. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624

    Article  PubMed  CAS  Google Scholar 

  122. Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I (2001) Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61:577–581

    PubMed  CAS  Google Scholar 

  123. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM (1999) The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 9:1441–1447

    Article  PubMed  CAS  Google Scholar 

  124. Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H, Kimura T (2001) Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol 28:22–28

    PubMed  CAS  Google Scholar 

  125. Horiuchi K, Le Gall S, Schulte M, Yamaguchi T, Reiss K, Murphy G, Toyama Y, Hartmann D, Saftig P, Blobel CP (2007) Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 18:176–188

    Article  PubMed  CAS  Google Scholar 

  126. Stetler-Stevenson WG (2008) Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 1:re6

    Google Scholar 

  127. Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knauper V, Docherty AJ, Murphy G (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435:39–44

    Article  PubMed  CAS  Google Scholar 

  128. Lee MH, Rapti M, Murphy G (2005) Total conversion of tissue inhibitor of metalloproteinase (TIMP) for specific metalloproteinase targeting: fine-tuning TIMP-4 for optimal inhibition of tumor necrosis factor-{alpha}-converting enzyme. J Biol Chem 280:15967–15975

    Article  PubMed  CAS  Google Scholar 

  129. Ahonen M, Poukkula M, Baker AH, Kashiwagi M, Nagase H, Eriksson JE, Kahari VM (2003) Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene 22:2121–2134

    Article  PubMed  CAS  Google Scholar 

  130. Baker AH, Zaltsman AB, George SJ, Newby AC (1998) Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest 101:1478–1487

    Article  PubMed  CAS  Google Scholar 

  131. Bond M, Murphy G, Bennett MR, Amour A, Knauper V, Newby AC, Baker AH (2000) Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity. J Biol Chem 275:41358–41363

    Article  PubMed  CAS  Google Scholar 

  132. Li G, Fridman R, Kim HR (1999) Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res 59:6267–6275

    PubMed  CAS  Google Scholar 

  133. Chesler L, Golde DW, Bersch N, Johnson MD (1995) Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1. Blood 86:4506–4515

    PubMed  CAS  Google Scholar 

  134. Liu XW, Taube ME, Jung KK, Dong Z, Lee YJ, Roshy S, Sloane BF, Fridman R, Kim HR (2005) Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells from extrinsic cell death: a potential oncogenic activity of tissue inhibitor of metalloproteinase-1. Cancer Res 65:898–906

    PubMed  CAS  Google Scholar 

  135. Mariani SM, Krammer PH (1998) Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur J Immunol 28:973–982

    Article  PubMed  CAS  Google Scholar 

  136. Loo G, Lippens S, Hahne M, Matthijssens F, Declercq W, Saelens X, Vandenabeele P (2003) A Bcl-2 transgene expressed in hepatocytes does not protect mice from fulminant liver destruction induced by Fas ligand. Cytokine 22:62–70

    Article  PubMed  CAS  Google Scholar 

  137. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809

    Article  PubMed  CAS  Google Scholar 

  138. Watermann I, Gerspach J, Lehne M, Seufert J, Schneider B, Pfizenmaier K, Wajant H (2007) Activation of CD95L fusion protein prodrugs by tumor-associated proteases. Cell Death Differ 14:765–774

    Article  PubMed  CAS  Google Scholar 

  139. Kassahn D, Nachbur U, Brunner T (2007) CD95L pro-drug: a novel Swiss Army Knife in cancer therapy? Cell Death Differ 14:393–394

    Article  PubMed  CAS  Google Scholar 

  140. Moss ML, White JM, Lambert MH, Andrews RC (2001) TACE and other ADAM proteases as targets for drug discovery. Drug Discov Today 6:417–426

    Article  PubMed  CAS  Google Scholar 

  141. Glunde K, Stasinopoulos I (2009) ADAM17: the new face of breast cancer-promoting metalloprotease activity. Cancer Biol Ther 8:1055–1057

    Article  PubMed  CAS  Google Scholar 

  142. Horiuchi K, Kimura T, Miyamoto T, Takaishi H, Okada Y, Toyama Y, Blobel CP (2007) Cutting edge: TNF-alpha-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J Immunol 179:2686–2689

    PubMed  CAS  Google Scholar 

  143. Zhang Y, Hegen M, Xu J, Keith JC Jr, Jin G, Du X, Cummons T, Sheppard BJ, Sun L, Zhu Y, Rao VR, Wang Q, Xu W, Cowling R, Nickerson-Nutter CL, Gibbons J, Skotnicki J, Lin LL, Levin J (2004) Characterization of (2R, 3S)-2-([[4-(2-butynyloxy)phenyl]sulfonyl]amino)-N, 3-dihydroxybutanamide, a potent and selective inhibitor of TNF-alpha converting enzyme. Int Immunopharmacol 4:1845–1857

    Article  PubMed  CAS  Google Scholar 

  144. Arimura K, Arima N, Matsushita K, Ohtsubo H, Fujiwara H, Kukita T, Ozaki A, Hagiwara T, Hamada H, Yoshino K, Tei C (2004) Matrix metalloproteinase inhibitor reduces apoptosis induction of bone marrow cells in MDS-RA. Eur J Haematol 73:17–24

    Article  PubMed  CAS  Google Scholar 

  145. DiMartino M, Wolff C, High W, Stroup G, Hoffman S, Laydon J, Lee JC, Bertolini D, Galloway WA, Crimmin MJ, Davis M, Davies S (1997) Anti-arthritic activity of hydroxamic acid-based pseudopeptide inhibitors of matrix metalloproteinases and TNF alpha processing. Inflamm Res 46:211–215

    Article  PubMed  CAS  Google Scholar 

  146. Drummond AH, Beckett P, Brown PD, Bone EA, Davidson AH, Galloway WA, Gearing AJ, Huxley P, Laber D, McCourt M, Whittaker M, Wood LM, Wright A (1999) Preclinical and clinical studies of MMP inhibitors in cancer. Ann N Y Acad Sci 878:228–235

    Article  PubMed  CAS  Google Scholar 

  147. Morimoto Y, Nishikawa K, Ohashi M (1997) KB-R7785, a novel matrix metalloproteinase inhibitor, exerts its antidiabetic effect by inhibiting tumor necrosis factor-alpha production. Life Sci 61:795–803

    Article  PubMed  CAS  Google Scholar 

  148. Togashi N, Ura N, Higashiura K, Murakami H, Shimamoto K (2002) Effect of TNF-alpha–converting enzyme inhibitor on insulin resistance in fructose-fed rats. Hypertension 39:578–580

    Article  PubMed  CAS  Google Scholar 

  149. Igney FH, Krammer PH (2005) Tumor counterattack: fact or fiction? Cancer Immunol Immunother 54:1127–1136

    Article  PubMed  Google Scholar 

  150. Lau HT, Yu M, Fontana A, Stoeckert CJ Jr (1996) Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273:109–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in the Amarante-Mendes laboratory is supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) and the Brazilian Research Council (CNPq-Brazil). The work in the Brunner laboratory is supported by grants from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Weinlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinlich, R., Brunner, T. & Amarante-Mendes, G.P. Control of death receptor ligand activity by posttranslational modifications. Cell. Mol. Life Sci. 67, 1631–1642 (2010). https://doi.org/10.1007/s00018-010-0289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0289-7

Keywords

Navigation