Skip to main content

Advertisement

Log in

Non-caspase proteases: triggers or amplifiers of apoptosis?

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Caspases are the most important effectors of apoptosis, the major form of programmed cell death (PCD) in multicellular organisms. This is best reflected by the appearance of serious development defects in mice deficient for caspase-8, -9, and -3. Meanwhile, caspase-independent PCD, mediated by other proteases or signaling components has been described in numerous publications. Although we do not doubt that such cell death exists, we propose that it has evolved later during evolution and is most likely not designed to execute, but to amplify and speed-up caspase-dependent cell death. This review shall provide evidence for such a concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  3. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    Article  CAS  PubMed  Google Scholar 

  5. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  PubMed  Google Scholar 

  6. Egger L, Schneider J, Rheme C, Tapernoux M, Hacki J, Borner C (2003) Serine proteases mediate apoptosis-like cell death and phagocytosis under caspase-inhibiting conditions. Cell Death Differ 10:1188–1203

    Article  CAS  PubMed  Google Scholar 

  7. Tait SWG, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:6452–6461

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613

    Article  CAS  PubMed  Google Scholar 

  9. Chauvier D, Ankri D, Charriaut-Marlangue C, Casimir R, Jacotot E (2007) Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ 14:387–391

    Article  CAS  PubMed  Google Scholar 

  10. Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R (1998) Non-specific effects of methylketone peptide inhibitors of caspases. FEBS Lett 442:117–121

    Article  Google Scholar 

  11. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    Article  CAS  PubMed  Google Scholar 

  12. Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO (2000) A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5:435–443

    Article  CAS  PubMed  Google Scholar 

  13. Blum ES, Driscoll M, Shaham S (2008) Noncanonical cell death programs in the nematode Caenorhabditis elegans. Cell Death Differ 15:1124–1131

    Article  CAS  PubMed  Google Scholar 

  14. Chung S, Gumienny TL, Hengartner MO, Driscoll M (2000) A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat Cell Biol 2:931–937

    Article  CAS  PubMed  Google Scholar 

  15. Fraser AG, McCarthy NJ, Evan GI (1997) drICE is an essential caspase required for apoptotic activity in Drosophila cells. EMBO J 16:6192–6199

    Article  CAS  PubMed  Google Scholar 

  16. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148

    Article  CAS  PubMed  Google Scholar 

  17. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  CAS  PubMed  Google Scholar 

  18. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967

    Article  CAS  PubMed  Google Scholar 

  19. Boatright KM, Renatus M, Scott FL, Sperandino S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  CAS  PubMed  Google Scholar 

  20. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  PubMed  Google Scholar 

  21. Luthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14:641–650

    Article  CAS  PubMed  Google Scholar 

  22. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  23. Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267

    Article  CAS  PubMed  Google Scholar 

  24. Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39:615–647

    Article  CAS  PubMed  Google Scholar 

  25. Youle RJ, Strasser A (2008) The Bcl-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  26. Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9:505–512

    Article  CAS  PubMed  Google Scholar 

  27. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  28. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  29. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR, Thompson CB (2000) The combined functions of proapoptotic Bcl-2 family members BAX and BAK are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    Article  CAS  PubMed  Google Scholar 

  30. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed  Google Scholar 

  31. Salmena L, Lemmers B, Hakem A, Matysiak-Zablocki E, Murakami K, Au PY, Berry DM, Tamblyn L, Shehabeldin A, Migon E, Wakeham A, Bouchard D, Yeh WC, McGlade JC, Ohashi PS, Hakem R (2003) Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17:883–895

    Article  CAS  PubMed  Google Scholar 

  32. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D (1998) Targeted disruption of the mouse caspase-8 gene ablates cell death induction by the TNR receptors, Fas/Apo1, and DR3 and is lethal perinatally. Immunity 9:267–276

    Article  CAS  PubMed  Google Scholar 

  33. Grzela T, Krauze A, Grzela K, Lazarczyk M, Niderla J, Brawura-Biskupski-Samaha R, Dziunycz P, Milewski L, Korczak-Kowalska G, Kulus M (2004) Impaired apoptosis of lymphocytes derived from patient with decreased expression of caspase-8 results in Alps-like phenotype. Int J Mol Med 14:937–942

    CAS  PubMed  Google Scholar 

  34. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Straus SE, Lenardo MJ (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–399

    Article  CAS  PubMed  Google Scholar 

  35. Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W (1999) An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med 130:591–601

    CAS  PubMed  Google Scholar 

  36. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  Google Scholar 

  37. Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P (2003) Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol 4:387–393

    Article  CAS  PubMed  Google Scholar 

  38. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8 independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  CAS  PubMed  Google Scholar 

  39. He E, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  40. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase-9 in apoptotic pathways in vivo. Cell 94:339–352

    Article  CAS  PubMed  Google Scholar 

  41. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9. Cell 94:325–337

    Article  CAS  PubMed  Google Scholar 

  42. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Google Scholar 

  43. Lakhani SA, Masud A, Kuida A, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851

    Article  CAS  PubMed  Google Scholar 

  44. Du C, Fang M, Li X, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  45. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613.621

    Google Scholar 

  47. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445–454

    Article  CAS  PubMed  Google Scholar 

  48. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  PubMed  Google Scholar 

  49. Candé C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C, Penninger JM, Kroemer G (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521

    Article  PubMed  CAS  Google Scholar 

  50. Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15:1113–1123

    Article  CAS  PubMed  Google Scholar 

  51. Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574

    Article  CAS  PubMed  Google Scholar 

  52. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-1 beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  53. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509

    Article  CAS  PubMed  Google Scholar 

  54. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, Towne E, Tracey D, Wardwell S, Feng-Yi W, Wong W, Kamen R, Seshadri T (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–411

    Article  CAS  PubMed  Google Scholar 

  55. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  Google Scholar 

  56. Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR, Nicholson DW (2006) Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440:1064–1068

    Article  CAS  PubMed  Google Scholar 

  57. Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, Van den Broecke C, Van Damme P, D’Herde K, Hachem JP, Borgonie G, Presland RB, Schoonjans L, Libert C, Vandekerckhove J, Gevaert K, Vandenabeele P, Declercq W (2007) Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9:666–674

    Article  CAS  PubMed  Google Scholar 

  58. Wang L, Miura M, Bergeron L, Zhu H, Yuan J (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78:739–750

    Article  CAS  PubMed  Google Scholar 

  59. Bergeron L, Perez GI, MacDonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC, Hara H, Moskowitz MA, Li E, Greenberg A, Tilly JL, Yuan J (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314

    Article  CAS  PubMed  Google Scholar 

  60. O’Reilly LA, Ekert PG, Harvey N, Marsden V, Cullen L, Vaux DL, Hacker G, Magnusson C, Pakusch M, Cecconi F, Kuida K, Strasser A, Huang DC, Kumar S (2002) Caspase-2 is not required for thymocyte or neuronal apoptosis even through cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ 9:832–841

    Article  PubMed  CAS  Google Scholar 

  61. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304:843–846

    Article  CAS  PubMed  Google Scholar 

  62. Read SH, Baliga BC, Ekert PG, Vaux DL, Kumar S (2002) A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol 159:739–745

    Article  CAS  PubMed  Google Scholar 

  63. Shi M, Vivian CJ, Lee K-J, Ge C, Morotomi-Yano K, Manzl C, Bock F, Sato S, Tomomori-Sato C, Zhu R, Haug JS, Swanson SK, Washburn MP, Chen DJ, Chen BP, Villunger A, Florens L, Du C (2009) DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance. Cell 136:508–520

    Article  CAS  PubMed  Google Scholar 

  64. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    Article  CAS  PubMed  Google Scholar 

  65. Marsden VS, Ekert PG, Van Delft M, Vaux DL, Adams JM, Strasser A (2004) Bcl-2-regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9. J Cell Biol 165:775–780

    Article  CAS  PubMed  Google Scholar 

  66. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering of cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8 and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    Article  CAS  PubMed  Google Scholar 

  67. Ruchaud S, Korfali N, Villa P, Kottke TJ, Dingwall C, Kaufmann SH, Earnshaw WC (2002) Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J 21:1967–1977

    Article  CAS  PubMed  Google Scholar 

  68. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Article  CAS  PubMed  Google Scholar 

  69. Cowling V, Downward J (2002) Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis signalling pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 9:1046–1056

    Article  CAS  PubMed  Google Scholar 

  70. O’Connell AR, Stenson-Cox C (2007) A more serine way to die: defining the characteristics of serine protease-mediated cell death cascades. Biochem Biophys Acta 1773:1491–1499

    Article  PubMed  CAS  Google Scholar 

  71. Moffitt KL, Martin SL, Walker B (2007) The emerging role of serine proteases in apoptosis. Biochem Soc Trans 35:559–560

    Article  CAS  PubMed  Google Scholar 

  72. Conus S, Simon H-U (2008) Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 76:1374–1382

    Article  CAS  PubMed  Google Scholar 

  73. Boya P, Kroemer G (2008) Lysosomal membrane permeabilzation in cell death. Oncogene 27:6434–6451

    Article  CAS  PubMed  Google Scholar 

  74. Ruggiero V, Johnson SE, Baglioni C (1987) Protection from tumor necrosis factor cytotoxicity by protease inhibitors. Cell Immunol 107:317–325

    Article  CAS  PubMed  Google Scholar 

  75. Williams MS, Henkart PA (1994) Apoptotic cell death induced by intracellular proteolysis. J Immunol 153:4247–4255

    CAS  PubMed  Google Scholar 

  76. Abate A, Schroder H (1998) Protease inhibitors protect macrophages from lipopolysaccharide-induced cytotoxicity: possible role for NF-kappaB. Life Sci 62:1081–1088

    Article  CAS  PubMed  Google Scholar 

  77. Masson D, Tschopp J (1987) A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49:679–685

    Article  CAS  PubMed  Google Scholar 

  78. Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH (1992) Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176:1521–1529

    Article  CAS  PubMed  Google Scholar 

  79. Chowdhury D, Lieberman J (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 26:389–420

    Article  CAS  PubMed  Google Scholar 

  80. Chen C, Darrow AL, Qi JS, D’Andrea MR, Andrade-Gordon P (2003) A novel serine protease predominately expressed in macrophages. Biochem J 374:97–107

    Article  CAS  PubMed  Google Scholar 

  81. De Bruin EC, Meersma D, De Wilde J, Den Otter I, Schipper EM, Medema JP, Peltenburg LT (2003) A serine protease is involved in the initiation of DNA damage-induced apoptosis. Cell Death Differ 10:1204–1212

    Article  PubMed  CAS  Google Scholar 

  82. Strasser A, Jost PJ, Nagata S (2009) The many roles of Fas receptor signaling in the immune system. Immunity 30:180–192

    Article  CAS  PubMed  Google Scholar 

  83. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    Article  CAS  PubMed  Google Scholar 

  84. Pardo J, Bosque A, Brehm R, Wallich R, Naval J, Mullbacher A, Anel A, Simon MM (2004) Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. J Cell Biol 167:457–468

    Article  CAS  PubMed  Google Scholar 

  85. Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O’Brien CA, Fitzgerald P, Tan EM, Bokoch GM, Greenberg AH, Green DR (1996) The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J 15:2407–2416

    CAS  PubMed  Google Scholar 

  86. Barry M, Heibein JA, Pinkoski MJ, Lee SF, Moyer RW, Green DR, Bleackley RC (2000) Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol 20:3781–3794

    Article  CAS  PubMed  Google Scholar 

  87. Waterhouse NJ, Sedelies KA, Trapani JA (2006) Role of Bid-induced mitochondrial outer membrane permeabilization in granzyme B-induced apoptosis. Cell Death Differ 7:17–24

    Google Scholar 

  88. Han J, Goldstein LA, Gastman BR, Froelich CJ, Xin XM, Rabinowich H (2005) Disruption of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic event. J BiolChem 279:22020–22029

    Google Scholar 

  89. Martinvalet D, Zhu P, Lieberman J (2005) Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22:355–370

    Article  CAS  PubMed  Google Scholar 

  90. Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–672

    Article  CAS  PubMed  Google Scholar 

  91. Metkar SS, Menaa C, Pardo J, Wang B, Wallich R, Freudenberg M, Kim S, Raja SM, Shi L, Simon MM, Froelich CJ (2008) Human and mouse granzyme A induce a pro-inflammatory cytokine response. Immunity 29:720–733

    Article  CAS  PubMed  Google Scholar 

  92. Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J (2004) Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24:9848–9862

    Article  CAS  PubMed  Google Scholar 

  93. Chao JR, Parganas E, Boyd K, Hong CY, Opferman JT, Ihle JN (2008) Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452:98–102

    Article  CAS  PubMed  Google Scholar 

  94. Nagata S (2007) DNA degradation in development and programmed cell death. Annu Rev Immunol 23:853–875

    Article  CAS  Google Scholar 

  95. Beresford PJ, Zhang D, Oh DY, Fan Z, Greer EL, Russo ML, Jaju M, Lieberman J (2001) Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J Biol Chem 276:43285–43293

    Article  CAS  PubMed  Google Scholar 

  96. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (1997) Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol 151:1205–1213

    CAS  PubMed  Google Scholar 

  97. Schlegel J, Peters I, Orrenius S (1995) Isolation and partial characterization of a protease involved in Fas-induced apoptosis. FEBS Lett 364:139–142

    Article  CAS  PubMed  Google Scholar 

  98. McGrath LB, Onnis V, Campiani G, Williams DC, Zisterer DM, McGee MM (2006) Caspase-activated DNase (CAD)-independent oligonucleosomal DNA fragmentation in chronic myeloid leukemia cells; a requirement for serine protease and Mn(2+)-dependent acidic endonuclease activity. Apoptosis 11:1473–1487

    Article  CAS  PubMed  Google Scholar 

  99. Altairac S, Wright SC, Courtois Y, Torriglia A (2003) l-DNase II activation by the 24 kD apoptotic protease (AP24) in TNF alpha-induced apoptoiss. Cell Death Differ 10:1109–1111

    Article  CAS  PubMed  Google Scholar 

  100. Wright SC, Wei QS, Kinder DH, Larrick JW (1996) Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide-deficient cells are resistant to tumor necrosis factor or ultraviolet light activation of the 24-kD apoptotic protease and DNA fragmentation. J Exp Med 183:463–471

    Article  CAS  PubMed  Google Scholar 

  101. Wright SC, Schellenberger U, Wang H, Kinder DH, Talhouk JW, Larrick JW (1997) Activation of CPP32-like proteases is not sufficient to trigger apoptosis: inhibition of apoptosis by agents that suppress activation of AP24, but not CPP32-like activity. J Exp Med 186:1107–1117

    Article  CAS  PubMed  Google Scholar 

  102. Wright SC, Zheng H, Zhong J (1996) Tumor cell resistance to apoptosis due to a defect in the activation of sphingomyelinase and the 24-kDa apoptotic protease (AP24). FASEB J 10:325–332

    CAS  PubMed  Google Scholar 

  103. Wright SC, Schellenberger U, Ji L, Wang H, Larrick JW (1997) Calmodulin-dependent protein kinase II mediates signal transduction in apoptosis. FASEB J 11:843–849

    CAS  PubMed  Google Scholar 

  104. Wright SC, Wang H, Wei QS, Kinder DH, Larrick JW (1998) Bcl-2 mediated resistance to apoptosis is associated with glutathione-induced inhibition of AP24 activation and nuclear DNA fragmentation. Cancer Res 58:5570–5576

    CAS  PubMed  Google Scholar 

  105. Dong Z, Saikumar P, Patel Y, Weinberg JM, Venkatachalam MA (2000) Serine protease inhibitors suppress cytochrome c-mediated caspase-9 activation and apoptosis during hypoxia-reoxygenation. Biochem J 347:669–677

    Article  CAS  PubMed  Google Scholar 

  106. O’Connell AR, Holohan C, Torriglia A, Lee BW, Stenson-Cox C (2006) Characterization of a serine protease-mediated cell death program activated in human leukemic cells. Exp Cell Res 312:27–39

    Article  PubMed  CAS  Google Scholar 

  107. O’Connell AR, Lee BW, Stenson-Cox C (2006) Caspase-dependent activation of chymotrypsin-like proteases mediates nuclear events during Jurkat C cell apoptosis. Biochem Biophys Res Commun 345:608–616

    Article  PubMed  CAS  Google Scholar 

  108. Potempa J, Korzus E, Travis J (1994) The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 269:15957–15960

    CAS  PubMed  Google Scholar 

  109. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69:597–604

    Article  CAS  PubMed  Google Scholar 

  110. Srinivasula SM, Ahman T, Fernandes-Alnemri T, Litwack G, Alnemri ES (1996) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple CED-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93:14486–14491

    Article  CAS  PubMed  Google Scholar 

  111. Quan LT, Caputo A, Bleackley RC, Pickup DJ, Salvesen GS (1995) Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A. J Biol Chem 270:10377–10379

    Article  CAS  PubMed  Google Scholar 

  112. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose)polymerase. Cell 81:801–809

    Article  CAS  PubMed  Google Scholar 

  113. Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI (1996) A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem 271:27802–27809

    Article  CAS  PubMed  Google Scholar 

  114. Ishidoh K, Kominami D (2002) Processing and activation of lysosomal proteinases. Biol Chem 383:1827–1831

    Article  CAS  PubMed  Google Scholar 

  115. Turk B, Bieth JG, Bjork I, Dolen I, Turk D, Cimerman N, Kos J, Colic A, Stoka V, Turk V (1995) Regulation of the activity of lysosomal cystein proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol Chem Hoppe Seyler 376:225–230

    CAS  PubMed  Google Scholar 

  116. Vasiljeva O, Turk B (2008) Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie 90:380–386

    Article  CAS  PubMed  Google Scholar 

  117. Gottlieb RA, Nordberg J, Skowronski E, Babiol BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci USA 93:654–658

    Article  CAS  PubMed  Google Scholar 

  118. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius S, Jäättelä M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    Article  CAS  PubMed  Google Scholar 

  119. Cirman T, Oresc K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587

    Article  CAS  PubMed  Google Scholar 

  120. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V, Salvesen GS (2001) Lysosomal protease pathways to apoptosis. Cleavage of Bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157

    Article  CAS  PubMed  Google Scholar 

  121. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase-8 mediates the mitochondria damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  122. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schütze S (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563

    Article  CAS  PubMed  Google Scholar 

  123. Houseweart MK, Vilaythong A, Yin KM, Turk B, Noebels JL, Myers RM (2003) Apoptosis caused by cathepsins does not require Bid signaling in an in vivo model of progressive myoclonus epilepsy (EPM1). Cell Death Differ 10:1329–1335

    Article  CAS  PubMed  Google Scholar 

  124. Droga-Mazovec G, Bojiic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of Bid and anti-apoptotic Bcl-2 homologues. J Biol Chem 283:19140–19145

    Article  CAS  PubMed  Google Scholar 

  125. Ishisaka R, Utsumi T, Kanno T, Arita K, Katunuma N, Akiyama J, Utsumi K (1999) Participation of a cathepsin L-type protease in the activation of caspase-3. Cell Struct Funct 465:465–470

    Article  Google Scholar 

  126. Ishisaka R, Kanno T, Akiyama J, Yoshioka T, Utsumi K, Utsumi T (2001) Activation of caspase-3 by lysosomal cysteine proteases and its role in 2, 2′-azobis-(2-amidinopropane)dihydrochloride (AAPH)-induced apoptosis in HL-60 cells. J Biochem 129:35–41

    CAS  PubMed  Google Scholar 

  127. Guicciardi ME, Bronk SF, Werneburg N, Yin XM, Gores GJ (2005) Bid is upstream of lysosome-mediated caspase-2 activation in tumor necrosis factor a-induced hepatocyte apoptosis. Gastroenterologia 129:269–284

    Article  CAS  Google Scholar 

  128. Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, Yousefi S, Simon HU (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205:685–698

    Article  CAS  PubMed  Google Scholar 

  129. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jäättelä M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1009

    Article  CAS  PubMed  Google Scholar 

  130. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ (2000) Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137

    Article  CAS  PubMed  Google Scholar 

  131. Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A (1996) Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J 15:3861–3870

    CAS  PubMed  Google Scholar 

  132. Nagaraj NS, Vigneswaran N, Zacharias W (2006) Cathepsin B mediates TRAIL-induced apoptosis in oral cancer cells. J Cancer Res Clin Oncol 132:171–183

    Article  CAS  PubMed  Google Scholar 

  133. Werneburg NW, Guicciardi ME, Yin XM, Gores GJ (2004) TNF-α-mediated lysosomal permeabilization is FAN- and caspase-8/Bid-dependent. Am J Physiol Gastrointest Liver Physiol 287:G436–G443

    Article  CAS  PubMed  Google Scholar 

  134. Gyrd-Hansen M, Farkas T, Fehrenbacher N, Bastholm L, Hoyer-Hansen M, Elling F, Wallach D, Flavell R, Kroemer G, Nylandsted J, Jäättelä M (2006) Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol 26:7880–7891

    Article  CAS  PubMed  Google Scholar 

  135. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:385–401

    Article  Google Scholar 

  136. Tobin DJ, Foitzik K, Reinheckel T, Mecklenburg L, Botchkarev VA, Peters C, Paus R (2002) The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am J Pathol 160:1807–1821

    CAS  PubMed  Google Scholar 

  137. Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118:3387–3395

    Article  CAS  PubMed  Google Scholar 

  138. Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ (2007) Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem 282:28960–28970

    Article  CAS  PubMed  Google Scholar 

  139. Oberle C, Huai J, Reinheckel T, Tacke M, Rassner M, Ekert PG, Buellesbach J, Borner C (2009) Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ. doi:10.1038/cdd.2009.214

Download references

Acknowledgments

Our work is supported by the Spemann Graduate School of Biology and Medicine (SGBM, GSC-4) and the Centre for Biological Signaling Studies (bioss, EXC 294), both supported by the Excellence Initiative of the German Federal and State Governments, and the Deutsche Forschungsgemeinschaft (BO-1933 and GRK1104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Borner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrader, K., Huai, J., Jöckel, L. et al. Non-caspase proteases: triggers or amplifiers of apoptosis?. Cell. Mol. Life Sci. 67, 1607–1618 (2010). https://doi.org/10.1007/s00018-010-0287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0287-9

Keywords

Navigation