Skip to main content
Log in

IL-13 downregulates PPAR-γ/heme oxygenase-1 via ER stress-stimulated calpain activation: aggravation of activated microglia death

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Interleukin 13 (IL-13) has been shown to induce the death of activated microglia. We observed that IL-13, but not IL-4 or IL-10, significantly enhanced endoplasmic reticulum (ER) stress induction, apoptosis and death in microglia activated by lipopolysaccharide (LPS). IL-13 enhanced ER stress-regulated calpain activation and calpain-II expression in LPS-activated microglia. Calpain-II siRNA effectively reversed the IL-13 + LPS-activated caspase-12 activation. Expression of heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-γ (PPAR-γ) was also increased in activated microglia, and this was effectively blocked by IL-13 and recombinant calpain. Both HO-1 inhibitor and PPAR-γ antagonist augmented, but calpain inhibitor and PPAR-γ agonists reversed, apoptosis induction in activated microglia. Transfection of PPAR-γ siRNA effectively inhibited HO-1 protein expression in activated microglia. LPS stimulated transcriptional activation of HO-1 via an increase in PPAR-γ DNA binding activity, which was reversed by IL-13. These results indicate that an ER stress-related calpain-down-regulated PPAR-γ/HO-1 pathway is involved in the IL-13-enhanced activated death of microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  2. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  CAS  PubMed  Google Scholar 

  3. Minghetti L, Ajmone-Cat MA, De Berardinis MA, De SR (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Rev 48:251–256

    Article  CAS  PubMed  Google Scholar 

  4. Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108:1343–1359

    Article  CAS  PubMed  Google Scholar 

  5. Shin WH, Lee DY, Park KW, Kim SU, Yang MS, Joe EH, Jin BK (2004) Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46:142–152

    Article  PubMed  Google Scholar 

  6. Yang MS, Ji KA, Jeon SB, Jin BK, Kim SU, Jou I, Joe E (2006) Interleukin-13 enhances cyclooxygenase-2 expression in activated rat brain microglia: implications for death of activated microglia. J Immunol 177:1323–1329

    CAS  PubMed  Google Scholar 

  7. Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444–452

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    Article  CAS  PubMed  Google Scholar 

  9. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392

    Article  CAS  PubMed  Google Scholar 

  10. Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3:269–283

    Article  CAS  PubMed  Google Scholar 

  11. Kyuhou S, Kato N, Gemba H (2006) Emergence of endoplasmic reticulum stress and activated microglia in Purkinje cell degeneration mice. Neurosci Lett 396:91–96

    Article  CAS  PubMed  Google Scholar 

  12. Murphy GM Jr, Yang L, Cordell B (1998) Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J Biol Chem 273:20967–20971

    Article  CAS  PubMed  Google Scholar 

  13. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  14. Schipper HM (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol 35:821–830

    Article  CAS  PubMed  Google Scholar 

  15. Takeda A, Itoyama Y, Kimpara T, Zhu X, Avila J, Dwyer BE, Perry G, Smith MA (2004) Heme catabolism and heme oxygenase in neurodegenerative disease. Antioxid Redox Signal 6:888–894

    CAS  PubMed  Google Scholar 

  16. Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995–2011

    Article  CAS  PubMed  Google Scholar 

  17. Lin Y, Vreman HJ, Wong RJ, Tjoa T, Yamauchi T, Noble-Haeusslein LJ (2007) Heme oxygenase-1 stabilizes the blood-spinal cord barrier and limits oxidative stress and white matter damage in the acutely injured murine spinal cord. J Cereb Blood Flow Metab 27:1010–1021

    CAS  PubMed  Google Scholar 

  18. Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    CAS  PubMed  Google Scholar 

  19. Kielian T, Syed MM, Liu S, Phulwani NK, Phillips N, Wagoner G, Drew PD, Esen N (2008) The synthetic peroxisome proliferator-activated receptor-gamma agonist ciglitazone attenuates neuroinflammation and accelerates encapsulation in bacterial brain abscesses. J Immunol 180:5004–5016

    CAS  PubMed  Google Scholar 

  20. Lee SR, Kim HY, Hong JS, Baek WK, Park JW (2009) PPARgamma agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia. Biochem Biophys Res Commun 380:17–21

    Article  CAS  PubMed  Google Scholar 

  21. Sobrado M, Pereira MP, Ballesteros I, Hurtado O, Fernandez-Lopez D, Pradillo JM, Caso JR, Vivancos J, Nombela F, Serena J, Lizasoain I, Moro MA (2009) Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARgamma-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci 29:3875–3884

    Article  CAS  PubMed  Google Scholar 

  22. Kronke G, Kadl A, Ikonomu E, Bluml S, Furnkranz A, Sarembock IJ, Bochkov VN, Exner M, Binder BR, Leitinger N (2007) Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 27:1276–1282

    Article  PubMed  Google Scholar 

  23. Yang MS, Park EJ, Sohn S, Kwon HJ, Shin WH, Pyo HK, Jin B, Choi KS, Jou I, Joe EH (2002) Interleukin-13 and -4 induce death of activated microglia. Glia 38:273–280

    Article  PubMed  Google Scholar 

  24. Sheu ML, Ho FM, Chao KF, Kuo ML, Liu SH (2004) Activation of phosphoinositide 3-kinase in response to high glucose leads to regulation of reactive oxygen species-related nuclear factor-kappaB activation and cyclooxygenase-2 expression in mesangial cells. Mol Pharmacol 66:187–196

    Article  CAS  PubMed  Google Scholar 

  25. Sheu ML, Ho FM, Yang RS, Chao KF, Lin WW, Lin-Shiau SY, Liu SH (2005) High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol 25:539–545

    Article  CAS  PubMed  Google Scholar 

  26. Sheu ML, Liu SH, Lan KH (2007) Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS One 2:e1096

    Article  PubMed  Google Scholar 

  27. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  CAS  PubMed  Google Scholar 

  28. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894

    Article  CAS  PubMed  Google Scholar 

  29. Siman R, Flood DG, Thinakaran G, Neumar RW (2001) Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons: effect of an Alzheimer’s disease-linked presenilin-1 knock-in mutation. J Biol Chem 276:44736–44743

    Article  CAS  PubMed  Google Scholar 

  30. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293

    Article  CAS  PubMed  Google Scholar 

  31. Uehara T (2007) Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxid Redox Signal 9:597–601

    Article  CAS  PubMed  Google Scholar 

  32. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  33. Szczepanik AM, Funes S, Petko W, Ringheim GE (2001) IL-4, IL-10 and IL-13 modulate A beta(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J Neuroimmunol 113:49–62

    Article  CAS  PubMed  Google Scholar 

  34. Kelly-Welch AE, Hanson EM, Boothby MR, Keegan AD (2003) Interleukin-4 and interleukin-13 signaling connections maps. Science 300:1527–1528

    Article  CAS  PubMed  Google Scholar 

  35. LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, Keegan AD, Garcia KC (2008) Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132:259–272

    Article  CAS  PubMed  Google Scholar 

  36. Habicht GS, Katona LI, Benach JL (1991) Cytokines and the pathogenesis of neuroborreliosis: borrelia burgdorferi induces glioma cells to secrete interleukin-6. J Infect Dis 164:568–574

    CAS  PubMed  Google Scholar 

  37. Netea MG, Kullberg BJ, Joosten LA, Sprong T, Verschueren I, Boerman OC, Amiot F, van den Berg WB, Van der Meer JW (2001) Lethal Escherichia coli and Salmonella typhimurium endotoxemia is mediated through different pathways. Eur J Immunol 31:2529–2538

    Article  CAS  PubMed  Google Scholar 

  38. Nakanishi H (2003) Microglial functions and proteases. Mol Neurobiol 27:163–176

    Article  CAS  PubMed  Google Scholar 

  39. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:173–189

    Article  CAS  PubMed  Google Scholar 

  40. Glynn P (2000) Neural development and neurodegeneration: two faces of neuropathy target esterase. Prog Neurobiol 61:61–74

    Article  CAS  PubMed  Google Scholar 

  41. Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP, Grimm E, Callaghan SM, Slack RS, Melloni E, Przedborski S, Robertson GS, Anisman H, Merali Z, Park DS (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 23:4081–4091

    CAS  PubMed  Google Scholar 

  42. Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6:977–983

    Article  CAS  PubMed  Google Scholar 

  43. Tan Y, Dourdin N, Wu C, Veyra TD, Elce JS, Greer PA (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024

    Article  CAS  PubMed  Google Scholar 

  44. Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155:623–640

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Dore S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130:1643–1652

    Article  PubMed  Google Scholar 

  46. Liu XM, Peyton KJ, Ensenat D, Wang H, Schafer AI, Alam J, Durante W (2005) Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle. Role in cell survival. J Biol Chem 280:872–877

    Article  CAS  PubMed  Google Scholar 

  47. Lee GH, Kim HK, Chae SW, Kim DS, Ha KC, Cuddy M, Kress C, Reed JC, Kim HR, Chae HJ (2007) Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression. J Biol Chem 282:21618–21628

    Article  CAS  PubMed  Google Scholar 

  48. Rosa AO, Egea J, Martinez A, Garcia AG, Lopez MG (2008) Neuroprotective effect of the new thiadiazolidinone NP00111 against oxygen-glucose deprivation in rat hippocampal slices: implication of ERK1/2 and PPARgamma receptors. Exp Neurol 212:93–99

    Article  CAS  PubMed  Google Scholar 

  49. Contestabile A (2009) Benefits of caloric restriction on brain aging and related pathological states: understanding mechanisms to devise novel therapies. Curr Med Chem 16:350–361

    Article  CAS  PubMed  Google Scholar 

  50. Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813–1826

    Article  CAS  PubMed  Google Scholar 

  51. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR-γ-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29:954–963

    Article  PubMed  Google Scholar 

  52. Yu X, Shao XG, Sun H, Li YN, Yang J, Deng YC, Huang YG (2008) Activation of cerebral peroxisome proliferator-activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus. Brain Res 1200:146–158

    Article  CAS  PubMed  Google Scholar 

  53. Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, Chen JJ, Liou JY, Shyue SK, Wu KK (2006) 15d-Prostaglandin J2 protects brain from ischemia–reperfusion injury. Arterioscler Thromb Vasc Biol 26:481–487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Taichung Veterans General Hospital, Taiwan (TCVGH-977304B), and the National Science Council of Taiwan (NSC96-2320-B-040-003-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meei Ling Sheu.

Additional information

S. H. Liu, C. N. Yang, and H. C. Pan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S.H., Yang, C.N., Pan, H.C. et al. IL-13 downregulates PPAR-γ/heme oxygenase-1 via ER stress-stimulated calpain activation: aggravation of activated microglia death. Cell. Mol. Life Sci. 67, 1465–1476 (2010). https://doi.org/10.1007/s00018-009-0255-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0255-4

Keywords

Navigation