Skip to main content
Log in

Helix insertion into bilayers and the evolution of membrane proteins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Polytopic α-helical membrane proteins cannot spontaneously insert into lipid bilayers without assistance from polytopic α-helical membrane proteins that already reside in the membrane. This raises the question of how these proteins evolved. Our current knowledge of the insertion of α-helices into natural and model membranes is reviewed with the goal of gaining insight into the evolution of membrane proteins. Topics include: translocon-dependent membrane protein insertion, antibiotic peptides and proteins, in vitro insertion of membrane proteins, chaperone-mediated insertion of transmembrane helices, and C-terminal tail-anchored (TA) proteins. Analysis of the E. coli genome reveals several predicted C-terminal TA proteins that may be descendents of proteins involved in pre-cellular membrane protein insertion. Mechanisms of pre-translocon polytopic α-helical membrane protein insertion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kol S, Nouwen N, Driessen AJM (2008) Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes. J Biol Chem 283:31269–31273

    Article  CAS  PubMed  Google Scholar 

  2. Bonnefoy N, Fiumera HL, Dujardin G, Fox TD (2009) Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. Biochim Biophys Acta 1793:60–70

    Article  CAS  PubMed  Google Scholar 

  3. Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667

    Article  CAS  PubMed  Google Scholar 

  4. Tsukazaki T, Hori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, Nureki O (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–992

    Article  CAS  PubMed  Google Scholar 

  5. Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77:1496–1500

    Article  CAS  PubMed  Google Scholar 

  6. Cavalier-Smith T (2001) Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J Mol Evol 53:555–595

    Article  CAS  PubMed  Google Scholar 

  7. Rajamani S, Vlassov A, Benner S, Coombs A, Olasgasti F, Deamer D (2008) Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74

    Article  CAS  PubMed  Google Scholar 

  8. Walter P, Keenan R, Schmitz U (2000) SRP—where the RNA and membrane worlds meet. Science 287:1212–1213

    Article  CAS  PubMed  Google Scholar 

  9. van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    Article  PubMed  CAS  Google Scholar 

  10. White SH, von Heijne G (2008) How translocons select transmembrane helices. Annu Rev Biophys 37:23–42

    Article  CAS  PubMed  Google Scholar 

  11. Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N (2009) YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 34:344–353

    Article  CAS  PubMed  Google Scholar 

  12. Lotz M, Haase W, Kühlbrandt W, Colllinson I (2008) Projection structure of yidC: a conserved mediator of membrane protein assembly. J Mol Biol 375:901–907

    Article  CAS  PubMed  Google Scholar 

  13. Neupert W, Hermann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  CAS  PubMed  Google Scholar 

  14. Rehling P, Model K, Brandner K, Kovermann P, Sickmann A, Meyer HE, Kühlbrandt W, Wagner R, Truscott KN, Pfanner N (2003) Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:1747–1751

    Article  CAS  PubMed  Google Scholar 

  15. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318

    Article  CAS  PubMed  Google Scholar 

  16. Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

    Article  PubMed  CAS  Google Scholar 

  17. Barrett CML, Mangels D, Robinson C (2005) Mutations in subunits of the Escherichia coli twin-arginine translocase block function via differing effects on translocation activity or tat complex structure. J Mol Biol 347:453–463

    Article  CAS  PubMed  Google Scholar 

  18. Urbanus ML, Fröderberg L, Drew D, Björk P, de Gier J-WL, Brunner J, Oudega B, Luirink J (2002) Targeting, insertion, and localization of Escherichia coli YidC. J Biol Chem 277:12718–12723

    Article  CAS  PubMed  Google Scholar 

  19. Hell K, Hermann JM, Pratje E, Neupert W, Stuart RA (1998) Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci USA 95:2250–2255

    Article  CAS  PubMed  Google Scholar 

  20. Mokranjac D, Neupert W (2009) Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochim Biophys Acta 1793:33–41

    Article  CAS  PubMed  Google Scholar 

  21. Martin JR, Harwood JH, McCaffery M, Fernandez DE, Cline K (2009) Localization and integration of thylakoid protein translocase subunit cpTatC. Plant J 58:831–842

    Article  CAS  PubMed  Google Scholar 

  22. Matsuzaki T, Fujiki Y (2008) The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway. J Cell Biol 183:1275–1286

    Article  CAS  PubMed  Google Scholar 

  23. Smith JJ, Aitchison JD (2009) Regulation of peroxisome dynamics. Curr Opin Cell Biol 21:119–126

    Article  CAS  PubMed  Google Scholar 

  24. Delille HK, Alves R, Schrader M (2009) Biogenesis of peroxisomes and mitochondria: linked by division. Histochem Cell Biol 131:441–446

    Article  CAS  PubMed  Google Scholar 

  25. Pohlschröder M, Hartmann E, Hand NJ, Dilks K, Haddad A (2005) Diversity and evolution of protein translocation. Annu Rev Microbiol 59:91–111

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Y-J, Tian H-F, Wen J-F (2009) The evolution of YidC/Oxa/Alb3 family in the three domains of life: a phylogenomic analysis. BMC Evol Biol 9:137

    Article  CAS  PubMed  Google Scholar 

  27. Gentle IE, Burri L, Lithgow T (2005) Molecular architecture and function of the Omp85 family of proteins. Mol Microbiol 58:1216–1225

    Article  CAS  PubMed  Google Scholar 

  28. Walther DM, Rapaport D (2009) Biogenesis of mitochondrial outer membrane proteins. Biochim Biophys Acta 1793:42–51

    Article  CAS  PubMed  Google Scholar 

  29. Walther DM, Rapaport D, Tommassen J (2009) Biogenesis of β-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 66:2789–2804

    Article  CAS  PubMed  Google Scholar 

  30. He K, Ludke SJ, Heller WT, Huang HW (1996) Mechanism of alamethicin insertion into lipid bilayers. Biophys J 71:2669–2679

    Article  CAS  PubMed  Google Scholar 

  31. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  32. Kristianse PE, Fimland G, Mantzilas D, Nissen-Meyer J (2005) Structure and mode of action of the membrane-permeabilizing antimicrobial peptide pheromone plantaricin A. J Biol Chem 280:22945–22950

    Article  CAS  Google Scholar 

  33. Haugen HS, Kristianse PE, Fimland PE, Nissen-Meyer J (2008) Mutational analysis of the class IIa bacteriocin curvacin A and its orientation in target cell membranes. Appl Environ Microbiol 74:6766–6773

    Article  CAS  PubMed  Google Scholar 

  34. González C, Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M (2000) Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc Natl Acad Sci USA 97:11221–11226

    Article  PubMed  Google Scholar 

  35. Sánchez-Barrena MJ, Martínez-Ripoll M, Gálvez A, Valdivia E, Maqueda M, Cruz V, Albert A (2003) Structure of bacteriocin AS-48: from soluble state to membrane bound state. J Mol Biol 334:541–549

    Article  PubMed  CAS  Google Scholar 

  36. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  Google Scholar 

  37. Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459:726–730

    Article  CAS  PubMed  Google Scholar 

  38. Scotto AW, Zakim D (1988) Reconstitution of membrane proteins. Spontaneous incorporation of integral membrane proteins into preformed bilayers of pure phospholipid. J Biol Chem 263:18500–18506

    CAS  PubMed  Google Scholar 

  39. Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J Mol Biol 371:639–648

    Article  CAS  PubMed  Google Scholar 

  40. Martín M, Albanesi D, Alzari PM, de Mendoza D (2009) Functional in vitro assembly of the integral membrane bacterial thermosensor DesK. Protein Expr Purif 66:39–45

    Article  PubMed  CAS  Google Scholar 

  41. Cappuccio JA, Blanchette CD, Sulchek TA, Arroyo ES, Kralj JM, Hinz AK, Kuhn EA, Chromy BA, Segelke BW, Rothschild KJ, Fletcher JE, Katzen F, Peterson TC, Kudlicki WA, Bench G, Hoeprich PD, Coleman MA (2008) Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteomics 7:2246–2253

    Article  CAS  PubMed  Google Scholar 

  42. Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50

    Article  CAS  PubMed  Google Scholar 

  43. Favaloro V, Spasic M, Schwappach B, Dobberstein B (2008) Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J Cell Sci 121:1832–1840

    Article  CAS  PubMed  Google Scholar 

  44. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:634–645

    Article  CAS  PubMed  Google Scholar 

  45. Wagner K, Mick DU, Rehling P (2009) Protein transport machineries for precursor translocation across the inner mitochondrial membrane. Biochim Biophys Acta 1793:52–59

    Article  CAS  PubMed  Google Scholar 

  46. Rabu C, Wipf P, Brodsky JL, High S (2008) A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J Biol Chem 283:27504–27513

    Article  CAS  PubMed  Google Scholar 

  47. Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ (2009) The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461:361–366

    Article  CAS  PubMed  Google Scholar 

  48. Agirre A, Barco A, Carrasco L, Nieva J (2002) Viroporin-mediated membrane permeabilization. Pore formation by nonstructural poliovirus 2B protein. J Biol Chem 277:40434–40441

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez ME, Carrasco L (2003) Viroporins. FEBS Lett 552:28–34

    Article  CAS  PubMed  Google Scholar 

  50. Melton JV, Ewart GD, Weir RC, Board PG, Lee E, Gage PW (2002) Alphavirus 6 K proteins form ion channels. J Biol Chem 277:46923–46931

    Article  CAS  PubMed  Google Scholar 

  51. Sánchez-Martínez S, Huarte N, Measo R, Madan V, Carrasco L, Nieva JL (2008) Functional and structural characterization of 2B viroporin membranolytic domains. Biochemistry 47:10731–10739

    Article  PubMed  CAS  Google Scholar 

  52. Rigaud J-L, Paternostre MT, Bluzat A (1988) Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2 incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27:2677–2688

    Article  CAS  PubMed  Google Scholar 

  53. Van Horn WD, Kim H-J, Ellis CD, Hadziselimovic A, Sulistijo E, Kara MD, Tian C, Sönnichsen FD, Sanders CR (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726–1729

    Article  PubMed  CAS  Google Scholar 

  54. Nagy JK, Sanders CR (2004) Destabilizing mutations promote membrane protein misfolding. Biochemistry 43:19–25

    Article  CAS  PubMed  Google Scholar 

  55. Lorch M, Booth PJ (2004) Insertion kinetics of a denatured α helical membrane protein into phospholipid bilayer vesicles. J Mol Biol 344:1109–1121

    Article  CAS  PubMed  Google Scholar 

  56. Hunt JF, Rath P, Rothschild KJ, Engelman DM (1997) Spontaneous, pH-dependent membrane insertion of a transbilayer α-helix. Biochemistry 36:15177–15192

    Article  CAS  PubMed  Google Scholar 

  57. Reshetnyak YK, Segala M, Andreev OS, Engelman DM (2007) A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers. Biophys J 93:2363–2372

    Article  CAS  PubMed  Google Scholar 

  58. Vāvere AL, Biddlecombe GB, Spees WM, Barbow JR, Wijesinge D, Andreev OA, Engelman DM, Reshetnyak YK, Lewis JS (2009) A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res 69:4510–4516

    Article  PubMed  CAS  Google Scholar 

  59. Wimley WC, White SH (2000) Designing transmembrane α-helices that insert spontaneously. Biochemistry 39:4432–4442

    Article  CAS  PubMed  Google Scholar 

  60. Tang J, Yin H, Qiu J, Tucker MJ, DeGrado WF, Fai F (2009) Using two fluorescent probes to dissect the binding, insertion, and dimerization kinetics of a model membrane peptide. J Am Chem Soc 131:3816–3817

    Article  CAS  PubMed  Google Scholar 

  61. Son S-Y, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 105:5739–5744

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki M, Jeong S-Y, Karbowski M, Youle RJ, Tjandra N (2003) The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J Mol Biol 334:445–458

    Article  CAS  PubMed  Google Scholar 

  63. Spatz L, Strittmatter P (1971) A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci USA 68:1042–1046

    Article  CAS  PubMed  Google Scholar 

  64. Enoch HG, Fleming PJ, Strittmatter P (1979) The binding of cytochrome b5 to phospholipid vesicles and biological membranes. Effect of orientation on intermembrane transfer and digestion by carboxypeptidase Y. J Biol Chem 254:6483–6488

    CAS  PubMed  Google Scholar 

  65. Arinç E, Rzepecki LM, Strittmatter P (1987) Topography of the C terminus of cytochrome b5 tightly bound to dimyristoylphosphatidylcholine vesicles. J Biol Chem 262:15563–15567

    PubMed  Google Scholar 

  66. Vergères G, Ramsden J, Waskell L (1995) The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum. J Biol Chem 270:3414–3422

    Article  PubMed  Google Scholar 

  67. Kuroda R, Kinoshita J, Honsho M, Mitoma J, Ito A (1996) In situ topology of cytochrome b5 in the endoplasmic reticulum membrane. J Biochem 120:828–833

    CAS  PubMed  Google Scholar 

  68. Brambillasca S, Yabal M, Makarow M, Borgese N (2006) Unassisted translocation of large polypeptide domains across phospholipid bilayers. J Cell Biol 175:767–777

    Article  CAS  PubMed  Google Scholar 

  69. Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer KS, Rapaport D (2008) Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J Cell Sci 121:1990–1998

    Article  CAS  PubMed  Google Scholar 

  70. Jäntti J, Keränen S, Kuismanen E, Söderlund H, Olkkonen VM (1994) Membrane insertion and intracellular transport of yeast syntaxin Sso2p in mammalian cells. J Cell Sci 107:3623–3633

    PubMed  Google Scholar 

  71. Stefanovic S, Hegde RS (2007) Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128:1147–1159

    Article  CAS  PubMed  Google Scholar 

  72. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev Mol Cell Biol 9:47–59

    Article  CAS  Google Scholar 

  73. Kim PK, Janiak-Spens F, Trimble WS, Leber B, Andrews DW (1997) Evidence for multiple mechanisms for membrane binding and integration via carboxyl-terminal insertion sequences. Biochemistry 36:8873–8882

    Article  CAS  PubMed  Google Scholar 

  74. Kim PK, Annis MG, Dlugosz PJ, Leber B, Andrews DW (2004) During apoptosis Bcl-2 changes membrane topology at both the endoplasmic reticulum and mitochondria. Mol Cell 14:523–529

    Article  CAS  PubMed  Google Scholar 

  75. Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24:2096–2103

    Article  CAS  PubMed  Google Scholar 

  76. Martinez-Caballero S, Dejean LM, Kinally MS, Oh KJ, Mannella CA, Kinally KW (2009) Assembly of the mitochondrial apoptosis-induced channel. MAC J Biol Chem 284:12235–12245

    Article  CAS  Google Scholar 

  77. Naylor K, Ingerman E, Okreglak V, Marino M, Hinshaw JE, Nunnari J (2006) Mdv1 interacts with assembled Dnm1 to promote mitochondrial division. J Biol Chem 281:2177–2183

    Article  CAS  PubMed  Google Scholar 

  78. Jackson MB (2007) In search of the fusion pore of exocytosis. Biophys Chem 126:201–208

    Article  CAS  PubMed  Google Scholar 

  79. Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, Loessner MJ, Stettner KO, Weber-Ban E, Ban N (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nature Struct Mol Biol 15:939–947

    Article  CAS  Google Scholar 

  80. http://www.genome.wisc.edu/sequencing/k12.htm

  81. http://www.cbs.dtu.dk/services/TMHMM/

  82. Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44

    Article  PubMed  CAS  Google Scholar 

  83. Kelly WL (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem Sci 23:222–227

    Article  Google Scholar 

  84. Mimms LT, Zampighi G, Nozaki Y, Tanford C, Reynolds JA (1981) Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry 20:833–840

    Article  CAS  PubMed  Google Scholar 

  85. Racker E, Chien T-F, Kandrach A (1975) A cholate-dilution procedure for the reconstitution of the Ca++ pump, 32Pi-ATP exchange and oxidative phosphorylation. FEBS Lett 57:14–18

    Article  CAS  PubMed  Google Scholar 

  86. Namani T, Deamer DW (2008) Stability of model membranes in extreme environments. Orig Life Evol Biosph 38:329–341

    Article  CAS  PubMed  Google Scholar 

  87. Deamer DW, Pashley RM (1989) Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig Life Evol Biosph 19:21–38

    Article  CAS  PubMed  Google Scholar 

  88. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 358:59–85

    Article  CAS  Google Scholar 

  89. Okuda S, Tokuda H (2009) Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB. Proc Natl Acad Sci USA 106:5877–5882

    Article  CAS  PubMed  Google Scholar 

  90. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from NIH (G12 RR013646 and R21 DC010071) and from the University of Texas at San Antonio Collaborative Research Seed Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Renthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renthal, R. Helix insertion into bilayers and the evolution of membrane proteins. Cell. Mol. Life Sci. 67, 1077–1088 (2010). https://doi.org/10.1007/s00018-009-0234-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0234-9

Keywords

Navigation