Skip to main content

Advertisement

Log in

Platelet–bacterial interactions

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Many bacteria are capable of interacting with platelets and inducing platelet aggregation. This interaction may be a direct interaction between a bacterial surface protein and a platelet receptor or may be an indirect interaction where plasma proteins bind to the bacterial surface and subsequently bind to a platelet receptor. However, these interactions usually do not trigger platelet activation as a secondary co-signal is also required. This is usually due to specific antibody bound to the bacteria interacting with FcγRIIa on the platelet surface. Secreted bacterial products such as gingipains and lipopolysaccharide may also be capable of triggering platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clawson CC, White JG (1971) Platelet interaction with bacteria. II. Fate of the bacteria. Am J Pathol 65:381–397

    CAS  PubMed  Google Scholar 

  2. Clawson CC, White JG (1971) Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. Am J Pathol 65:367–380

    CAS  PubMed  Google Scholar 

  3. Clawson CC (1973) Platelet interaction with bacteria. 3. Ultrastructure. Am J Pathol 70:449–471

    CAS  PubMed  Google Scholar 

  4. Clawson CC, Rao GH, White JG (1975) Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am J Pathol 81:411–420

    CAS  PubMed  Google Scholar 

  5. Patel SR, Hartwig JH, Italiano JE Jr (2005) The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 115:3348–3354

    Article  CAS  PubMed  Google Scholar 

  6. Brass LF, Stalker TJ, Zhu L, Woulfe DS (2007) Signal transduction during platlet plug formation. In: Michelson AD (ed) Platelets. Academic, Burlington, pp 319–346

  7. Reed GL (2007) Platelet secretion. In: Michelson AD (ed) Platelets. Academic, Burlington, pp 309–318

  8. Fitzgerald JR, Foster TJ, Cox D (2006) The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 4:445–457

    Article  CAS  PubMed  Google Scholar 

  9. Kerrigan SW, Douglas I, Wray A, Heath J, Byrne MF, Fitzgerald D, Cox D (2002) A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation. Blood 100:509–516

    Article  CAS  PubMed  Google Scholar 

  10. Kerrigan SW, Jakubovics NS, Keane C, Maguire P, Wynne K, Jenkinson HF, Cox D (2007) Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun 75:5740–5747

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien L, Kerrigan SW, Kaw G, Hogan M, Penades J, Litt D, Fitzgerald DJ, Foster TJ, Cox D (2002) Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine–aspartate repeat protein SdrE and protein A. Mol Microbiol 44:1033–1044

    Article  PubMed  Google Scholar 

  12. Herzberg MC, Brintzenhofe KL, Clawson CC (1983) Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect Immun 39:1457–1469

    CAS  PubMed  Google Scholar 

  13. Ford I, Douglas CW, Cox D, Rees DG, Heath J, Preston FE (1997) The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br J Haematol 97:737–746

    Article  CAS  PubMed  Google Scholar 

  14. Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW (2005) A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 129:101–109

    Article  CAS  PubMed  Google Scholar 

  15. Pampolina C, McNicol A (2005) Streptococcus sanguis-induced platelet activation involves two waves of tyrosine phosphorylation mediated by FcγRIIA and αIIbβ3. Thromb Haemost 93:932–939

    CAS  PubMed  Google Scholar 

  16. Siauw C, Kobsar A, Dornieden C, Beyrich C, Schinke B, Schubert-Unkmeir A, Abele-Horn M, Speer CP, Eigenthaler M (2006) Group B streptococcus isolates from septic patients and healthy carriers differentially activate platelet signaling cascades. Thromb Haemost 95:836–849

    CAS  PubMed  Google Scholar 

  17. Ruggeri ZM (2007) The role of von Willebrand factor in thrombus formation. Thromb Res 120(Suppl 1):S5–S9

    Article  CAS  PubMed  Google Scholar 

  18. Jenkinson HF, Lamont RJ (2005) Oral microbial communities in sickness and in health. Trends Microbiol 13:589–595

    Article  CAS  PubMed  Google Scholar 

  19. Mattila KJ, Pussinen PJ, Paju S (2005) Dental infections and cardiovascular diseases: a review. J Periodontol 76:2085–2088

    Article  PubMed  Google Scholar 

  20. Beck JD, Offenbacher S (2005) Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol 76:2089–2100

    Article  PubMed  Google Scholar 

  21. Moreillon P, Que YA, Bayer AS (2002) Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am 16:297–318

    Article  PubMed  Google Scholar 

  22. Chiu B (1999) Multiple infections in carotid atherosclerotic plaques. Am Heart J 138:S534–S536

    Article  CAS  PubMed  Google Scholar 

  23. Fowler VG Jr, Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, Corey GR, Spelman D, Bradley SF, Barsic B, Pappas PA, Anstrom KJ, Wray D, Fortes CQ, Anguera I, Athan E, Jones P, van der Meer JT, Elliott TS, Levine DP, Bayer AS (2005) Staphylococcus aureus endocarditis: a consequence of medical progress. J Am Med Assoc 293:3012–3021

    Article  CAS  Google Scholar 

  24. Beachey EH, Stollerman GH (1971) Toxic effects of streptococcal M protein on platelets and polymorphonuclear leukocytes in human blood. J Exp Med 134:351–365

    Article  CAS  PubMed  Google Scholar 

  25. Herzberg MC, Brintzenhofe KL (1983) ADP-like platelet aggregation activity generated by viridans streptococci incubated with exogenous ATP. Infect Immun 40:120–125

    CAS  PubMed  Google Scholar 

  26. Herzberg MC, Brintzenhofe KL, Clawson CC (1983) Cell-free released components of Streptococcus sanguis inhibit human platelet aggregation. Infect Immun 42:394–401

    CAS  PubMed  Google Scholar 

  27. Kurpiewski GE, Forrester LJ, Campbell BJ, Barrett JT (1983) Platelet aggregation by Streptococcus pyogenes. Infect Immun 39:704–708

    CAS  PubMed  Google Scholar 

  28. Sullam PM, Payan DG, Dazin PF, Valone FH (1990) Binding of viridans group streptococci to human platelets: a quantitative analysis. Infect Immun 58:3802–3806

    CAS  PubMed  Google Scholar 

  29. Erickson PR, Herzberg MC (1987) A collagen-like immunodeterminant on the surface of Streptococcus sanguis induces platelet aggregation. J Immunol 138:3360–3366

    CAS  PubMed  Google Scholar 

  30. Erickson PR, Herzberg MC (1990) Purification and partial characterization of a 65-kDa platelet aggregation-associated protein antigen from the surface of Streptococcus sanguis. J Biol Chem 265:14080–14087

    CAS  PubMed  Google Scholar 

  31. Erickson PR, Herzberg MC (1993) The Streptococcus sanguis platelet aggregation-associated protein. Identification and characterization of the minimal platelet-interactive domain. J Biol Chem 268:1646–1649

    CAS  PubMed  Google Scholar 

  32. Erickson PR, Herzberg MC, Tierney G (1992) Cross-reactive immunodeterminants on Streptococcus sanguis and collagen. Predicting a structural motif of platelet-interactive domains. J Biol Chem 267:10018–10023

    CAS  PubMed  Google Scholar 

  33. Gong K, Wen DY, Ouyang T, Rao AT, Herzberg MC (1995) Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies. Infect Immun 63:3628–3633

    CAS  PubMed  Google Scholar 

  34. Herzberg MC, Nobbs A, Tao L, Kilic A, Beckman E, Khammanivong A, Zhang Y (2005) Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis. J Periodontol 76:2101–2105

    Article  PubMed  Google Scholar 

  35. Ford I, Douglas CW, Heath J, Rees C, Preston FE (1996) Evidence for the involvement of complement proteins in platelet aggregation by Streptococcus sanguis NCTC 7863. Br J Haematol 94:729–739

    Article  CAS  PubMed  Google Scholar 

  36. McNicol A, Zhu R, Pesun R, Pampolina C, Jackson EC, Bowden GH, Zelinski T (2006) A role for immunoglobulin G in donor-specific Streptococcus sanguis-induced platelet aggregation. Thromb Haemost 95:288–293

    CAS  PubMed  Google Scholar 

  37. Douglas CW, Heath J, Hampton KK, Preston FE (1993) Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol 39:179–182

    Article  CAS  PubMed  Google Scholar 

  38. Bensing BA, Sullam PM (2002) An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44:1081–1094

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi Y, Sandberg AL, Ruhl S, Muller J, Cisar JO (1997) A specific cell surface antigen of Streptococcus gordonii is associated with bacterial hemagglutination and adhesion to alpha2-3-linked sialic acid-containing receptors. Infect Immun 65:5042–5051

    CAS  PubMed  Google Scholar 

  40. Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, Lopez JA, Griffiss JM, Sullam PM (2005) Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol 58:380–392

    Article  CAS  PubMed  Google Scholar 

  41. Jakubovics NS, Kerrigan SW, Nobbs AH, Stromberg N, van Dolleweerd CJ, Cox DM, Kelly CG, Jenkinson HF (2005) Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun 73:6629–6638

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi Y, Ruhl S, Yoon JW, Sandberg AL, Cisar JO (2002) Adhesion of viridans group streptococci to sialic acid-, galactose- and N-acetylgalactosamine-containing receptors. Oral Microbiol Immunol 17:257–262

    Article  CAS  PubMed  Google Scholar 

  43. Wu H, Zeng M, Fives-Taylor P (2007) The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of Streptococcus parasanguinis. Infect Immun 75:2181–2188

    Article  CAS  PubMed  Google Scholar 

  44. Bensing BA, Lopez JA, Sullam PM (2004) The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha. Infect Immun 72:6528–6537

    Article  CAS  PubMed  Google Scholar 

  45. Yajima A, Takahashi Y, Konishi K (2005) Identification of platelet receptors for the Streptococcus gordonii DL1 sialic acid-binding adhesin. Microbiol Immunol 49:795–800

    CAS  PubMed  Google Scholar 

  46. Nobbs AH, Shearer BH, Drobni M, Jepson MA, Jenkinson HF (2007) Adherence and internalization of Streptococcus gordonii by epithelial cells involves beta1 integrin recognition by SspA and SspB (antigen I/II family) polypeptides. Cell Microbiol 9:65–83

    Article  CAS  PubMed  Google Scholar 

  47. Prakobphol A, Xu F, Hoang VM, Larsson T, Bergstrom J, Johansson I, Frangsmyr L, Holmskov U, Leffler H, Nilsson C, Boren T, Wright JR, Stromberg N, Fisher SJ (2000) Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J Biol Chem 275:39860–39866

    Article  CAS  PubMed  Google Scholar 

  48. Heddle C, Nobbs AH, Jakubovics NS, Gal M, Mansell JP, Dymock D, Jenkinson HF (2003) Host collagen signal induces antigen I/II adhesin and invasin gene expression in oral Streptococcus gordonii. Mol Microbiol 50:597–607

    Article  CAS  PubMed  Google Scholar 

  49. Demuth DR, Irvine DC, Costerton JW, Cook GS, Lamont RJ (2001) Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infect Immun 69:5736–5741

    Article  CAS  PubMed  Google Scholar 

  50. Egland PG, Du LD, Kolenbrander PE (2001) Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii. Infect Immun 69:7512–7516

    Article  CAS  PubMed  Google Scholar 

  51. Jakubovics NS, Stromberg N, van Dolleweerd CJ, Kelly CG, Jenkinson HF (2005) Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol 55:1591–1605

    Article  CAS  PubMed  Google Scholar 

  52. Lamont RJ, El-Sabaeny A, Park Y, Cook GS, Costerton JW, Demuth DR (2002) Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology 148:1627–1636

    CAS  PubMed  Google Scholar 

  53. Douglas CW, Brown PR, Preston FE (1990) Platelet aggregation by oral streptococci. FEMS Microbiol Lett 60:63–67

    Article  CAS  PubMed  Google Scholar 

  54. Bensing BA, Rubens CE, Sullam PM (2001) Genetic loci of Streptococcus mitis that mediate binding to human platelets. Infect Immun 69:1373–1380

    Article  CAS  PubMed  Google Scholar 

  55. Zimmerman TS, Spiegelberg HL (1975) Pneumococcus-induced serotonin release from human platelets. Identification of the participating plasma/serum factor as immunoglobulin. J Clin Invest 56:828–834

    Article  CAS  PubMed  Google Scholar 

  56. Shannon O, Hertzen E, Norrby-Teglund A, Morgelin M, Sjobring U, Bjorck L (2007) Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 65:1147–1157

    Article  CAS  PubMed  Google Scholar 

  57. Sjobring U, Ringdahl U, Ruggeri ZM (2002) Induction of platelet thrombi by bacteria and antibodies. Blood 100:4470–4477

    Article  CAS  PubMed  Google Scholar 

  58. Siegel I, Cohen S (1964) Action of Staphylococcal toxin on human platelets. J Infect Dis 114:488–502

    CAS  PubMed  Google Scholar 

  59. Bernheimer AW, Schwartz LL (1965) Lysis of bacterial protoplasts and spheroplasts by Staphylococcal alpha-toxin and Streptolysin S. J Bacteriol 89:1387–1392

    CAS  PubMed  Google Scholar 

  60. Manohar M, Maheswaran SK, Frommes SP, Lindorfer RK (1967) Platelet damaging factor, a fifth activity of staphylococcal alpha-toxin. J Bacteriol 94:224–231

    CAS  PubMed  Google Scholar 

  61. Hawiger J, Steckley S, Hammond D, Cheng C, Timmons S, Glick AD, Des Prez RM (1979) Staphylococci-induced human platelet injury mediated by protein A and immunoglobulin G Fc fragment receptor. J Clin Invest 64:931–937

    Article  CAS  PubMed  Google Scholar 

  62. Herrmann M, Lai QJ, Albrecht RM, Mosher DF, Proctor RA (1993) Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis 167:312–322

    CAS  PubMed  Google Scholar 

  63. Sullam PM, Bayer AS, Foss WM, Cheung AL (1996) Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect Immun 64:4915–4921

    CAS  PubMed  Google Scholar 

  64. Loughman A, Fitzgerald JR, Brennan MP, Higgins J, Downer R, Cox D, Foster TJ (2005) Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 57:804–818

    Article  CAS  PubMed  Google Scholar 

  65. Fitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, Visai L, Speziale P, Cox D, Foster TJ (2006) Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Mol Microbiol 59:212–230

    Article  CAS  PubMed  Google Scholar 

  66. Saravia-Otten P, Muller HP, Arvidson S (1997) Transcription of Staphylococcus aureus fibronectin binding protein genes is negatively regulated by agr and an agr-independent mechanism. J Bacteriol 179:5259–5263

    CAS  PubMed  Google Scholar 

  67. Pawar P, Shin PK, Mousa SA, Ross JM, Konstantopoulos K (2004) Fluid shear regulates the kinetics and receptor specificity of Staphylococcus aureus binding to activated platelets. J Immunol 173:1258–1265

    CAS  PubMed  Google Scholar 

  68. George NP, Wei Q, Shin PK, Konstantopoulos K, Ross JM (2006) Staphylococcus aureus adhesion via Spa, ClfA, and SdrCDE to immobilized platelets demonstrates shear-dependent behavior. Arter Thromb Vasc Biol 26:2394–2400

    Article  CAS  Google Scholar 

  69. George NP, Konstantopoulos K, Ross JM (2007) Differential kinetics and molecular recognition mechanisms involved in early versus late growth phase Staphylococcus aureus cell binding to platelet layers under physiological shear conditions. J Infect Dis 196:639–646

    Article  CAS  PubMed  Google Scholar 

  70. Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D (2008) Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arter Thromb Vasc Biol 28:335–340

    Article  CAS  Google Scholar 

  71. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JA, Gough TS, Hook M, Campbell ID, Potts JR (2003) Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423:177–181

    Article  CAS  PubMed  Google Scholar 

  72. Raibaud S, Schwarz-Linek U, Kim JH, Jenkins HT, Baines ER, Gurusiddappa S, Hook M, Potts JR (2005) Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in staphylococci, streptococci, and spirochetes. J Biol Chem 280:18803–18809

    Article  CAS  PubMed  Google Scholar 

  73. Meenan NA, Visai L, Valtulina V, Schwarz-Linek U, Norris NC, Gurusiddappa S, Hook M, Speziale P, Potts JR (2007) The tandem beta-zipper model defines high affinity fibronectin-binding repeats within Staphylococcus aureus FnBPA. J Biol Chem 282:25893–25902

    Article  CAS  PubMed  Google Scholar 

  74. McAleese FM, Walsh EJ, Sieprawska M, Potempa J, Foster TJ (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276:29969–29978

    Article  CAS  PubMed  Google Scholar 

  75. Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ (2007) Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 75:3335–3343

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen T, Ghebrehiwet B, Peerschke EI (2000) Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 68:2061–2068

    Article  CAS  PubMed  Google Scholar 

  77. Hartleib J, Kohler N, Dickinson RB, Chhatwal GS, Sixma JJ, Hartford OM, Foster TJ, Peters G, Kehrel BE, Herrmann M (2000) Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 96:2149–2156

    CAS  PubMed  Google Scholar 

  78. O’Seaghdha M, van Schooten CJ, Kerrigan SW, Emsley J, Silverman GJ, Cox D, Lenting PJ, Foster TJ (2006) Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 273:4831–4841

    Article  PubMed  CAS  Google Scholar 

  79. Siboo IR, Chambers HF, Sullam PM (2005) Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73:2273–2280

    Article  CAS  PubMed  Google Scholar 

  80. Atherton JC (2006) The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol 1:63–96

    Article  CAS  PubMed  Google Scholar 

  81. Kurose I, Granger DN, Evans DJ Jr, Evans DG, Graham DY, Miyasaka M, Anderson DC, Wolf RE, Cepinskas G, Kvietys PR (1994) Helicobacter pylori-induced microvascular protein leakage in rats: role of neutrophils, mast cells, and platelets. Gastroenterology 107:70–79

    CAS  PubMed  Google Scholar 

  82. Ozdogru I, Kalay N, Dogan A, Inanc MT, Kaya MG, Topsakal R, Gul I, Kutukoglu I, Kilic H, Eryol NK (2007) The relationship between Helicobacter pylori IgG titre and coronary atherosclerosis. Acta Cardiol 62:501–505

    Article  PubMed  Google Scholar 

  83. Kinsara AJ (2004) H. pylori and myocardial infarction. Saudi Med J 25:816

    PubMed  Google Scholar 

  84. Haider AW, Wilson PW, Larson MG, Evans JC, Michelson EL, Wolf PA, O’Donnell CJ, Levy D (2002) The association of seropositivity to Helicobacter pylori, Chlamydia pneumoniae, and cytomegalovirus with risk of cardiovascular disease: a prospective study. J Am Coll Cardiol 40:1408–1413

    Article  PubMed  Google Scholar 

  85. Park MH, Min JY, Koh SB, Kim BJ, Park MK, Park KW, Lee DH (2006) Helicobacter pylori infection and the CD14 C(-260)T gene polymorphism in ischemic stroke. Thromb Res 118:671–677

    Article  CAS  PubMed  Google Scholar 

  86. Pietroiusti A, Diomedi M, Silvestrini M, Cupini LM, Luzzi I, Gomez-Miguel MJ, Bergamaschi A, Magrini A, Carrabs T, Vellini M, Galante A (2002) Cytotoxin-associated gene-A—positive Helicobacter pylori strains are associated with atherosclerotic stroke. Circulation 106:580–584

    Article  CAS  PubMed  Google Scholar 

  87. Honda C, Adachi K, Arima N, Tanaka S, Yagi J, Morita T, Tanimura T, Furuta K, Kinoshita Y (2008) Helicobacter pylori infection does not accelerate the age-related progression of arteriosclerosis: a 4-year follow-up study. J Gastroenterol Hepatol 23:373–378

    Google Scholar 

  88. Corcoran PA, Atherton JC, Kerrigan SW, Wadstrom T, Murray FE, Peek RM, Fitzgerald DJ, Cox DM, Byrne MF (2007) The effect of different strains of Helicobacter pylori on platelet aggregation. Can J Gastroenterol 21:367–370

    PubMed  Google Scholar 

  89. Byrne MF, Kerrigan SW, Corcoran PA, Atherton JC, Murray FE, Fitzgerald DJ, Cox DM (2003) Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 124:1846–1854

    Article  CAS  PubMed  Google Scholar 

  90. Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 74:479–485

    Article  CAS  PubMed  Google Scholar 

  91. Wachowicz B, Saluk J, Kaca W (1998) Response of blood platelets to Proteus mirabilis lipopolysaccharide. Microbiol Immunol 42:47–49

    CAS  PubMed  Google Scholar 

  92. Saluk-Juszczak J, Wachowicz B, Kaca W (1999) Stimulatory effects of endotoxin on the platelet secretory process. Microbios 99:45–53

    CAS  PubMed  Google Scholar 

  93. Montrucchio G, Bosco O, Del Sorbo L, Fascio Pecetto P, Lupia E, Goffi A, Omede P, Emanuelli G, Camussi G (2003) Mechanisms of the priming effect of low doses of lipopoly-saccharides on leukocyte-dependent platelet aggregation in whole blood. Thromb Haemost 90:872–881

    CAS  PubMed  Google Scholar 

  94. Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M (2004) Expression of Toll-like receptors on human platelets. Thromb Res 113:379–385

    Article  CAS  PubMed  Google Scholar 

  95. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O (2005) Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 83:196–198

    Article  CAS  PubMed  Google Scholar 

  96. Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P (2005) Platelets express functional Toll-like receptor-4. Blood 106:2417–2423

    Article  CAS  PubMed  Google Scholar 

  97. Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107:637–641

    Article  CAS  PubMed  Google Scholar 

  98. Ward JR, Bingle L, Judge HM, Brown SB, Storey RF, Whyte MK, Dower SK, Buttle DJ, Sabroe I (2005) Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 94:831–838

    PubMed  Google Scholar 

  99. Stahl AL, Svensson M, Morgelin M, Svanborg C, Tarr PI, Mooney JC, Watkins SL, Johnson R, Karpman D (2006) Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108:167–176

    Article  CAS  PubMed  Google Scholar 

  100. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O (2008) Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 141:84–91

    Article  CAS  PubMed  Google Scholar 

  101. Scott T, Owens MD (2008) Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF-kappaB pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol Immunol 45:1001–1008

    Article  CAS  PubMed  Google Scholar 

  102. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469

    Article  CAS  PubMed  Google Scholar 

  103. Beachey EH, Chiang TM, Ofek I, Kang AH (1977) Interaction of lipoteichoic acid of group A streptococci with human platelets. Infect Immun 16:649–654

    CAS  PubMed  Google Scholar 

  104. Chugh TD, Burns GJ, Shuhaiber HJ, Bahr GM (1990) Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated by lipoteichoic acid. Infect Immun 58:315–319

    CAS  PubMed  Google Scholar 

  105. Sheu JR, Lee CR, Lin CH, Hsiao G, Ko WC, Chen YC, Yen MH (2000) Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets. Thromb Haemost 83:777–784

    CAS  PubMed  Google Scholar 

  106. Sheu JR, Hsiao G, Lee C, Chang W, Lee LW, Su CH, Lin CH (2000) Antiplatelet activity of Staphylococcus aureus lipoteichoic acid is mediated through a cyclic AMP pathway. Thromb Res 99:249–258

    Article  CAS  PubMed  Google Scholar 

  107. Lourbakos A, Potempa J, Travis J, D’Andrea MR, Andrade-Gordon P, Santulli R, Mackie EJ, Pike RN (2001) Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun 69:5121–5130

    Article  CAS  PubMed  Google Scholar 

  108. Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, Santulli R, Potempa J, Pike RN (2001) Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97:3790–3797

    Article  CAS  PubMed  Google Scholar 

  109. Rose PE, Armour JA, Williams CE, Hill FG (1985) Verotoxin and neuraminidase induced platelet aggregating activity in plasma: their possible role in the pathogenesis of the haemolytic uraemic syndrome. J Clin Pathol 38:438–441

    Article  CAS  PubMed  Google Scholar 

  110. Cooling LL, Walker KE, Gille T, Koerner TA (1998) Shiga toxin binds human platelets via globotriaosylceramide (Pk antigen) and a novel platelet glycosphingolipid. Infect Immun 66:4355–4366

    CAS  PubMed  Google Scholar 

  111. Viisoreanu D, Polanowska-Grabowska R, Suttitanamongkol S, Obrig TG, Gear AR (2000) Human platelet aggregation is not altered by Shiga toxins 1 or 2. Thromb Res 98:403–410

    Article  CAS  PubMed  Google Scholar 

  112. Ghosh SA, Polanowska-Grabowska RK, Fujii J, Obrig T, Gear AR (2004) Shiga toxin binds to activated platelets. J Thromb Haemost 2:499–506

    Article  CAS  PubMed  Google Scholar 

  113. Karpman D, Papadopoulou D, Nilsson K, Sjogren AC, Mikaelsson C, Lethagen S (2001) Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood 97:3100–3108

    Article  CAS  PubMed  Google Scholar 

  114. Motto DG, Chauhan AK, Zhu G, Homeister J, Lamb CB, Desch KC, Zhang W, Tsai HM, Wagner DD, Ginsburg D (2005) Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest 115:2752–2761

    Article  CAS  PubMed  Google Scholar 

  115. Guessous F, Marcinkiewicz M, Polanowska-Grabowska R, Keepers TR, Obrig T, Gear AR (2005) Shiga toxin 2 and lipopolysaccharide cause monocytic THP-1 cells to release factors which activate platelet function. Thromb Haemost 94:1019–1027

    CAS  PubMed  Google Scholar 

  116. Bhakdi S, Muhly M, Mannhardt U, Hugo F, Klapettek K, Mueller-Eckhardt C, Roka L (1988) Staphylococcal alpha toxin promotes blood coagulation via attack on human platelets. J Exp Med 168:527–542

    Article  CAS  PubMed  Google Scholar 

  117. Arvand M, Bhakdi S, Dahlback B, Preissner KT (1990) Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex. J Biol Chem 265:14377–14381

    CAS  PubMed  Google Scholar 

  118. Cohen-Solal JFG, Cassard L, Fridman W-H, Sautes-Fridman C (2004) Fcγ receptors. Immunol Lett 92:199

    Google Scholar 

  119. Henson PM, Spiegelberg HL (1973) Release of serotonin from human platelets induced by aggregated immunoglobulins of different classes and subclasses. J Clin Invest 52:1282–1288

    Article  CAS  PubMed  Google Scholar 

  120. Palosuo T, Leikola J (1975) Platelet aggregation by isolated and aggregated human IgG. Clin Exp Immunol 20:371–374

    CAS  PubMed  Google Scholar 

  121. Sullam PM, Hyun WC, Szollosi J, Dong J, Foss WM, Lopez JA (1998) Physical proximity and functional interplay of the glycoprotein Ib-IX-V complex and the Fc receptor FcγRIIA on the platelet plasma membrane. J Biol Chem 273:5331–5336

    Article  CAS  PubMed  Google Scholar 

  122. Shido K, Ahmad G, Hsu L, Kamiyama M (1995) Characterization of human platelet IgG Fc receptor associated with membrane glycoprotein. J Clin Lab Immunol 46:1–11

    CAS  PubMed  Google Scholar 

  123. Beynon RP, Bahl VK, Prendergast BD (2006) Infective endocarditis. Br Med J 333:334–339

    Article  Google Scholar 

  124. Claessens YE, Dhainaut JF (2007) Diagnosis and treatment of severe sepsis. Crit Care 11(Suppl 5):S2

    Google Scholar 

  125. Yaguchi A, Lobo FLM, Vincent JL, Pradier O (2004) Platelet function in sepsis. J Thromb Haemost 2:2096–2102

    Article  CAS  PubMed  Google Scholar 

  126. Alt E, Amann-Vesti B, Madl C, Funk G, Koppensteiner R (2004) Platelet aggregation and blood rheology in severe sepsis/septic shock: relation to the sepsis-related organ failure assessment (SOFA) score. Clin Hemorheol Microcirc 30:107–115

    PubMed  Google Scholar 

  127. Sharma B, Sharma M, Majumder M, Steier W, Sangal A, Kalawar M (2007) Thrombocytopenia in septic shock patients—a prospective observational study of incidence, risk factors and correlation with clinical outcome. Anaesth Intensive Care 35:874–880

    CAS  PubMed  Google Scholar 

  128. Amirlak I, Amirlak B (2006) Haemolytic uraemic syndrome: an overview. Nephrology (Carlton) 11:213–218

    Article  Google Scholar 

  129. Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104

    Article  CAS  PubMed  Google Scholar 

  130. McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB, Shields DC, Fitzgerald DJ (2004) Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 3:133–144

    CAS  PubMed  Google Scholar 

  131. Gawaz M, Stellos K, Langer HF (2008) Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells. J Thromb Haemost 6:235–242

    CAS  PubMed  Google Scholar 

  132. Koyama H, Nishizawa Y (2005) Platelet in progression of atherosclerosis: a potential target in diabetic patients. Curr Diabetes Rev 1:159–165

    Article  CAS  PubMed  Google Scholar 

  133. Langer HF, Gawaz M (2008) Platelet–vessel wall interactions in atherosclerotic disease. Thromb Haemost 99:480–486

    CAS  PubMed  Google Scholar 

  134. May AE, Seizer P, Gawaz M (2008) Platelets: inflammatory firebugs of vascular walls. Arter Thromb Vasc Biol 28:s5–s10

    Article  CAS  Google Scholar 

  135. Kuckleburg CJ, Tiwari R, Czuprynski CJ (2008) Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species. Thromb Haemost 99:363–372

    CAS  PubMed  Google Scholar 

  136. Semple JW (2008) Platelets play a direct role in sepsis-associated endothelial cell death. Thromb Haemost 99:249

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Cox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerrigan, S.W., Cox, D. Platelet–bacterial interactions. Cell. Mol. Life Sci. 67, 513–523 (2010). https://doi.org/10.1007/s00018-009-0207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0207-z

Keywords

Navigation