Skip to main content

Advertisement

Log in

Fusogenic activity of cationic lipids and lipid shape distribution

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Addition of co-lipids into cationic lipid formulations is considered as promoting cell delivery of DNA by enhancing fusion processes with cell membranes. Here, by combining FRET and confocal microscopy, we demonstrate that some cationic lipids do not require a co-lipid to fuse efficiently with cells. These cationic lipids are able to self-organize into bilayers that are stable enough to form liposomes, while presenting some destabilizing properties reminiscent of the conically shaped fusogenic co-lipid, DOPE. We therefore analyzed the resident lipid structures in cationic bilayers by molecular dynamics simulations, clustering the individual lipid structures into populations of similarly shaped molecules, as opposed to the classical approach of using the static packing parameter to define the lipid shapes. Comparison of fusogenic properties with these lipid populations suggests that the ratio of cylindrical versus conical lipid populations correlates with the ability to fuse with cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  CAS  PubMed  Google Scholar 

  2. Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116:255–264

    Article  CAS  PubMed  Google Scholar 

  3. Elouahabi A, Ruysschaert JM (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11:336–347

    Article  CAS  PubMed  Google Scholar 

  4. Zuhorn IS, Engberts JB, Hoekstra D (2007) Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur Biophys J 36:349–362

    Article  CAS  PubMed  Google Scholar 

  5. Wrobel I, Collins D (1995) Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim Biophys Acta 1235:296–304

    Article  PubMed  Google Scholar 

  6. Hafez IM, Cullis PR (2001) Roles of lipid polymorphism in intracellular delivery. Adv Drug Deliv Rev 47:139–148

    Article  CAS  PubMed  Google Scholar 

  7. Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295

    Article  PubMed  Google Scholar 

  8. Zuhorn IS, Hoekstra D (2002) On the mechanism of cationic amphiphile-mediated transfection. To fuse or not to fuse: is that the question? J Membr Biol 189:167–179

    Article  CAS  PubMed  Google Scholar 

  9. Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MC, Engberts JB, Hoekstra D (2005) Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 11:801–810

    Article  CAS  PubMed  Google Scholar 

  10. Chernomordik LV, Zimmerberg J (1995) Bending membranes to the task: structural intermediates in bilayer fusion. Curr Opin Struct Biol 5:541–547

    Article  CAS  PubMed  Google Scholar 

  11. Cullis PR, Hope MJ (1978) Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature 271:672–674

    Article  CAS  PubMed  Google Scholar 

  12. Markin VS, Kozlov MM, Borovjagin VL (1984) On the theory of membrane fusion. The stalk mechanism. Gen Physiol Biophys 3:361–377

    CAS  PubMed  Google Scholar 

  13. Ellens H, Bentz J, Szoka FC (1986) Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature. Biochemistry 25:285–294

    Article  CAS  PubMed  Google Scholar 

  14. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 272:1525–1568

    Google Scholar 

  15. Israelachvili JN (1994) Intermolecular and surface forces. Academic, London

    Google Scholar 

  16. Ruysschaert JM, el Ouahabi A, Willeaume V, Huez G, Fuks R, Vandenbranden M, Di Stefano P (1994) A novel cationic amphiphile for transfection of mammalian cells. Biochem Biophys Res Commun 203:1622–1628

    Article  CAS  PubMed  Google Scholar 

  17. Martin I, Ruysschaert J, Epand RM (1999) Role of the N-terminal peptides of viral envelope proteins in membrane fusion. Adv Drug Deliv Rev 38:233–255

    Article  CAS  PubMed  Google Scholar 

  18. Cladera J, Martin I, Ruysschaert JM, O’Shea P (1999) Characterization of the sequence of interactions of the fusion domain of the simian immunodeficiency virus with membranes. Role of the membrane dipole potential. J Biol Chem 274:29951–29959

    Article  CAS  PubMed  Google Scholar 

  19. Chattopadhyay A (1990) Chemistry and biology of N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem Phys Lipids 53:1–15

    Article  CAS  PubMed  Google Scholar 

  20. Titus JA, Haugland R, Sharrow SO, Segal DM (1982) Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J Immunol Methods 50:193–204

    Article  CAS  PubMed  Google Scholar 

  21. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  22. Kaminksi GA, Friesner RA, Tirado-Rives J, Jorgensen W (2001) Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J Phys Chem B 105:6474–6498

    Article  Google Scholar 

  23. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  CAS  PubMed  Google Scholar 

  24. Lensink MF, Lonez C, Ruysschaert JM, Vandenbranden M (2009) Characterization of the cationic DiC(14)-amidine bilayer by mixed DMPC/DiC(14)-amidine molecular dynamics simulations shows an interdigitated nonlamellar bilayer phase. Langmuir 25:5230–5238

    Article  CAS  PubMed  Google Scholar 

  25. Hess B (2007) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122

    Article  Google Scholar 

  26. Guest MF, Bush IJ, Van Dam HJJ, Sherwood P, Thomas JMH, Van Lenthe JH, Havenith RWA, Kendrick J (2005) The GAMESS-UK electronic structure package: algorithms, developments and applications. Mol Phys Int J Interface Between Chem Phys 103:719–747

    CAS  Google Scholar 

  27. Bayly CI, Cieplak P, Cornell W, Kollman PA (2002) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  Google Scholar 

  28. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (2002) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  29. Chandrasekhar J, Spellmeyer DC, Jorgensen WL (2002) Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1−), and chloride(1−) ions. J Am Chem Soc 106:903–910

    Article  Google Scholar 

  30. Jorgensen WL, Madura JD (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys Int J Interface Between Chem Phys 56:1381–1392

    CAS  Google Scholar 

  31. Bockmann RA, Hac A, Heimburg T, Grubmuller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Article  PubMed  Google Scholar 

  32. Bockmann RA, Grubmuller H (2004) Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Angew Chem Int Ed Engl 43:1021–1024

    Article  PubMed  Google Scholar 

  33. Gurtovenko AA (2005) Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular-dynamics study. J Chem Phys 122:244902

    Article  PubMed  Google Scholar 

  34. Cevc G (1990) Membrane electrostatics. Biochim Biophys Acta 1031:311–382

    CAS  PubMed  Google Scholar 

  35. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  36. Tandia BM, Lonez C, Vandenbranden M, Ruysschaert JM, Elouahabi A (2005) Lipid mixing between lipoplexes and plasma lipoproteins is a major barrier for intravenous transfection mediated by cationic lipids. J Biol Chem 280:12255–12261

    Article  CAS  PubMed  Google Scholar 

  37. Lonez C, Legat A, Vandenbranden M, Ruysschaert JM (2008) DiC14-amidine confers new anti-inflammatory properties to phospholipids. Cell Mol Life Sci 65:620–630

    Article  CAS  PubMed  Google Scholar 

  38. el Ouahabi A, Thiry M, Pector V, Fuks R, Ruysschaert JM, Vandenbranden M (1997) The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett 414:187–192

    Article  CAS  PubMed  Google Scholar 

  39. Kucerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88:2626–2637

    Article  CAS  PubMed  Google Scholar 

  40. Gurtovenko AA, Patra M, Karttunen M, Vattulainen I (2004) Cationic DMPC/DMTAP lipid bilayers: molecular dynamics study. Biophys J 86:3461–3472

    Article  CAS  PubMed  Google Scholar 

  41. Ellens H, Siegel DP, Alford D, Yeagle PL, Boni L, Lis LJ, Quinn PJ, Bentz J (1989) Membrane fusion and inverted phases. Biochemistry 28:3692–3703

    Article  CAS  PubMed  Google Scholar 

  42. Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561

    CAS  PubMed  Google Scholar 

  43. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

C.L. is a Postdoctoral Researcher of the Belgian National Fund for Scientific research (FNRS), E.K. is a FRIA (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture) fellow, M.F.L. acknowledges support from the Walloon Region of Belgium—DGTRE contract 515993, and M.V. is a Research Associate of the Belgian National Fund for Scientific Research (FNRS). J.M.V. is Research Director of the National Fund for Scientific Research (Belgium) and acknowledges support from the National Fund for Scientific Research (Belgium), Télévie grant 7.4.558.07.F & Fonds de la Recherche Scientifique Médicale, grant 3.4.571.07.F

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Lonez.

Additional information

C. Lonez and M. F. Lensink contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonez, C., Lensink, M.F., Kleiren, E. et al. Fusogenic activity of cationic lipids and lipid shape distribution. Cell. Mol. Life Sci. 67, 483–494 (2010). https://doi.org/10.1007/s00018-009-0197-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0197-x

Keywords

Navigation