Dujon B (2005) Homing nucleases and the yeast mitochondrial omega locus: a historical perspective, vol 16. Springer, Berlin
Google Scholar
Liu Q, Belle A, Shub DA, Belfort M, Edgell DR (2003) SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site. J Mol Biol 334:13–23
PubMed
CAS
Google Scholar
Edgell DR (2005) Free-standing homing endonucleases of T-even phage: freeloaders or functionaries?, vol 16. Springer, Berlin
Google Scholar
Edgell DR (2002) Selfish DNA: new abode for homing endonucleases. Curr Biol 12:R276–R278. doi:S0960982202007996[pii]
PubMed
CAS
Google Scholar
Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756
PubMed
CAS
Google Scholar
Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev S, Dryden DT, Dybvig K et al (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812
PubMed
CAS
Google Scholar
Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35
PubMed
CAS
Google Scholar
Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973
PubMed
CAS
Google Scholar
Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95
PubMed
CAS
Google Scholar
Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S (2009) Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res 37:2560–2573. doi:gkp095[pii]10.1093/nar/gkp095
PubMed
CAS
Google Scholar
Tsutakawa SE, Morikawa K (2001) The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease. Nucleic Acids Res 29:3775–3783
PubMed
CAS
Google Scholar
Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25:4626–4638. doi:gka746[pii]
PubMed
CAS
Google Scholar
Chevalier B, Turmel M, Lemieux C, Monnat RJ Jr, Stoddard BL (2003) Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. J Mol Biol 329:253–269
PubMed
CAS
Google Scholar
Thompson AJ, Yuan X, Kudlicki W, Herrin DL (1992) Cleavage and recognition pattern of a double-strand-specific endonuclease (I-creI) encoded by the chloroplast 23S rRNA intron of Chlamydomonas reinhardtii. Gene 119:247–251. doi:0378-1119(92)90278-W[pii]
PubMed
CAS
Google Scholar
Turmel M, Otis C, Cote V, Lemieux C (1997) Evolutionarily conserved and functionally important residues in the I-CeuI homing endonuclease. Nucleic Acids Res 25:2610–2619
PubMed
CAS
Google Scholar
Wang J, Kim HH, Yuan X, Herrin DL (1997) Purification, biochemical characterization and protein-DNA interactions of the I-CreI endonuclease produced in Escherichia coli. Nucleic Acids Res 25:3767–3776
PubMed
CAS
Google Scholar
Aagaard C, Awayez MJ, Garrett RA (1997) Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI. Nucleic Acids Res 25:1523–1530
PubMed
CAS
Google Scholar
Bolduc JM, Spiegel PC, Chatterjee P, Brady KL, Downing ME, Caprara MG, Waring RB, Stoddard BL (2003) Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev 17:2875–2888
PubMed
CAS
Google Scholar
Moure CM, Gimble FS, Quiocho FA (2003) The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J Mol Biol 334:685–695. doi:S0022283603012233[pii]
PubMed
CAS
Google Scholar
Chevalier B, Sussman D, Otis C, Noel AJ, Turmel M, Lemieux C, Stephens K, Monnat RJ Jr, Stoddard BL (2004) Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease. Biochemistry 43:14015–14026
PubMed
CAS
Google Scholar
Jurica MS, Monnat RJ Jr, Stoddard BL (1998) DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell 2:469–476
PubMed
CAS
Google Scholar
Marcaida MJ, Prieto J, Redondo P, Nadra AD, Alibes A, Serrano L, Grizot S, Duchateau P, Paques F, Blanco FJ et al (2008) Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Proc Natl Acad Sci USA 105:16888–16893. doi:0804795105[pii]10.1073/pnas.0804795105
PubMed
CAS
Google Scholar
Moure CM, Gimble FS, Quiocho FA (2002) Crystal structure of the intein homing endonuclease PI-SceI bound to its recognition sequence. Nat Struct Biol 9:764–770
PubMed
CAS
Google Scholar
Spiegel PC, Chevalier B, Sussman D, Turmel M, Lemieux C, Stoddard BL (2006) The structure of I-CeuI homing endonuclease: evolving asymmetric DNA recognition from a symmetric protein scaffold. Structure 14:869–880
PubMed
CAS
Google Scholar
Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905. doi:S1097276502006901[pii]
PubMed
CAS
Google Scholar
Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962
PubMed
CAS
Google Scholar
Grizot S, Smith J, Prieto J, Daboussi F, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, et al. (2009) Efficient targeting of a SCID gene by an engineered single chain homing endonuclease. Nucleic Acids Res (in press)
Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498–6502
PubMed
CAS
Google Scholar
Kostrewa D, Winkler FK (1995) Mg2 + binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 A resolution. Biochemistry 34:683–696
PubMed
CAS
Google Scholar
Viadiu H, Aggarwal AK (1998) The role of metals in catalysis by the restriction endonuclease BamHI. Nat Struct Biol 5:910–916. doi:10.1038/2352
PubMed
CAS
Google Scholar
Chevalier BS, Monnat RJ Jr, Stoddard BL (2001) The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites. Nat Struct Biol 8:312–316
PubMed
CAS
Google Scholar
Moure CM, Gimble FS, Quiocho FA (2008) Crystal structures of I-SceI complexed to nicked DNA substrates: snapshots of intermediates along the DNA cleavage reaction pathway. Nucleic Acids Res 36:3287–3296
PubMed
CAS
Google Scholar
Ho Y, Kim SJ, Waring RB (1997) A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease. Proc Natl Acad Sci USA 94:8994–8999
PubMed
CAS
Google Scholar
Ho Y, Waring RB (1999) The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing. J Mol Biol 292:987–1001. doi:10.1006/jmbi.1999.3070S0022-2836(99)93070-X[pii]
PubMed
CAS
Google Scholar
Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65
PubMed
CAS
Google Scholar
Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S et al (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355:443–458. doi:S0022-2836(05)01325-2[pii]10.1016/j.jmb.2005.10.065
PubMed
CAS
Google Scholar
Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149. doi:gkl720[pii]10.1093/nar/gkl720
PubMed
Google Scholar
Redondo P, Prieto J, Munoz IG, Alibes A, Stricher F, Serrano L, Cabaniols JP, Daboussi F, Arnould S, Perez C et al (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107–111
PubMed
CAS
Google Scholar
Friedhoff P, Franke I, Meiss G, Wende W, Krause KL, Pingoud A (1999) A similar active site for non-specific and specific endonucleases. Nat Struct Biol 6:112–113. doi:10.1038/5796
PubMed
CAS
Google Scholar
Kuhlmann UC, Moore GR, James R, Kleanthous C, Hemmings AM (1999) Structural parsimony in endonuclease active sites: should the number of homing endonuclease families be redefined? FEBS Lett 463:1–2. doi:S0014-5793(99)01499-4[pii]
PubMed
CAS
Google Scholar
Mehta P, Katta K, Krishnaswamy S (2004) HNH family subclassification leads to identification of commonality in the His-Me endonuclease superfamily. Protein Sci 13:295–300. doi:10.1110/ps.03115604
PubMed
CAS
Google Scholar
Jakubauskas A, Giedriene J, Bujnicki JM, Janulaitis A (2007) Identification of a single HNH active site in type IIS restriction endonuclease Eco31I. J Mol Biol 370:157–169. doi:S0022-2836(07)00541-4[pii]10.1016/j.jmb.2007.04.049
PubMed
CAS
Google Scholar
Azarinskas A, Maneliene Z, Jakubauskas A (2006) Hin4II, a new prototype restriction endonuclease from Haemophilus influenzae RFL4: discovery, cloning and expression in Escherichia coli. J Biotechnol 123:288–296. doi:S0168-1656(05)00789-3[pii]10.1016/j.jbiotec.2005.12.016
PubMed
CAS
Google Scholar
Saravanan M, Vasu K, Kanakaraj R, Rao DN, Nagaraja V (2007) R.KpnI, an HNH superfamily REase, exhibits differential discrimination at non-canonical sequences in the presence of Ca2 + and Mg2+. Nucleic Acids Res 35:2777–2786. doi:gkm114[pii]10.1093/nar/gkm114
PubMed
CAS
Google Scholar
Cymerman IA, Obarska A, Skowronek KJ, Lubys A, Bujnicki JM (2006) Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease. Proteins 65:867–876. doi:10.1002/prot.21156
PubMed
CAS
Google Scholar
Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774
PubMed
CAS
Google Scholar
Goodrich-Blair H, Scarlato V, Gott JM, Xu MQ, Shub DA (1990) A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell 63:417–424. doi:0092-8674(90)90174-D[pii]
PubMed
CAS
Google Scholar
Goodrich-Blair H, Shub DA (1994) The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames. Nucleic Acids Res 22:3715–3721
PubMed
CAS
Google Scholar
Goodrich-Blair H, Shub DA (1996) Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84:211–221. doi:S0092-8674(00)80976-9[pii]
PubMed
CAS
Google Scholar
Landthaler M, Lau NC, Shub DA (2004) Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease. J Bacteriol 186:4307–4314. doi:10.1128/JB.186.13.4307-4314.2004186/13/4307[pii]
PubMed
CAS
Google Scholar
Landthaler M, Shub DA (2003) The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille. Nucleic Acids Res 31:3071–3077
PubMed
CAS
Google Scholar
Eddy SR, Gold L (1991) The phage T4 nrdB intron: a deletion mutant of a version found in the wild. Genes Dev 5:1032–1041
PubMed
CAS
Google Scholar
Drouin M, Lucas P, Otis C, Lemieux C, Turmel M (2000) Biochemical characterization of I-CmoeI reveals that this H-N-H homing endonuclease shares functional similarities with H-N-H colicins. Nucleic Acids Res 28:4566–4572
PubMed
CAS
Google Scholar
Holloway SP, Deshpande NN, Herrin DL (1999) The catalytic group-I introns of the psbA gene of chlamydomonas reinhardtii : core structures, ORFs and evolutionary implications. Curr Genet 36:69–78. doi:90360069.294[pii]
PubMed
CAS
Google Scholar
Shen BW, Landthaler M, Shub DA, Stoddard BL (2004) DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol 342:43–56
PubMed
CAS
Google Scholar
Johansen S, Embley TM, Willassen NP (1993) A family of nuclear homing endonucleases. Nucleic Acids Res 21:4405
PubMed
CAS
Google Scholar
Muscarella DE, Vogt VM (1993) A mobile group I intron from Physarum polycephalum can insert itself and induce point mutations in the nuclear ribosomal DNA of saccharomyces cerevisiae. Mol Cell Biol 13:1023–1033
PubMed
CAS
Google Scholar
Muscarella DE, Ellison EL, Ruoff BM, Vogt VM (1990) Characterization of I-Ppo, an intron-encoded endonuclease that mediates homing of a group I intron in the ribosomal DNA of Physarum polycephalum. Mol Cell Biol 10:3386–3396
PubMed
CAS
Google Scholar
Wittmayer PK, Raines RT (1996) Substrate binding and turnover by the highly specific I-PpoI endonuclease. Biochemistry 35:1076–1083. doi:10.1021/bi952363vbi952363v[pii]
PubMed
CAS
Google Scholar
Wittmayer PK, McKenzie JL, Raines RT (1998) Degenerate DNA recognition by I-PpoI endonuclease. Gene 206:11–21. doi:S0378111997005635[pii]
PubMed
CAS
Google Scholar
Johansen S, Vogt VM (1994) An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing. Cell 76:725–734. doi:0092-8674(94)90511-8[pii]
PubMed
CAS
Google Scholar
Johansen S, Elde M, Vader A, Haugen P, Haugli K, Haugli F (1997) In vivo mobility of a group I twintron in nuclear ribosomal DNA of the myxomycete Didymium iridis. Mol Microbiol 24:737–745
PubMed
CAS
Google Scholar
Haugen P, Wikmark OG, Vader A, Coucheron DH, Sjottem E, Johansen SD (2005) The recent transfer of a homing endonuclease gene. Nucleic Acids Res 33:2734–2741
PubMed
CAS
Google Scholar
Johansen SD, Haugen P, Nielsen H (2007) Expression of protein-coding genes embedded in ribosomal DNA. Biol Chem 388:679–686. doi:10.1515/BC.2007.089
PubMed
CAS
Google Scholar
Elde M, Haugen P, Willassen NP, Johansen S (1999) I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3’ cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site. Eur J Biochem 259:281–288
PubMed
CAS
Google Scholar
Elde M, Willassen NP, Johansen S (2000) Functional characterization of isoschizomeric His-Cys box homing endonucleases from Naegleria. Eur J Biochem 267:7257–7266. doi:ejb1862[pii]
PubMed
CAS
Google Scholar
Ellison EL, Vogt VM (1993) Interaction of the intron-encoded mobility endonuclease I-PpoI with its target site. Mol Cell Biol 13:7531–7539
PubMed
CAS
Google Scholar
Flick KE, Jurica MS, Monnat RJ Jr, Stoddard BL (1998) DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature 394:96–101
PubMed
CAS
Google Scholar
Flick KE, McHugh D, Heath JD, Stephens KM, Monnat RJ Jr, Stoddard BL (1997) Crystallization and preliminary X-ray studies of I-PpoI: a nuclear, intron-encoded homing endonuclease from Physarum polycephalum. Protein Sci 6:2677–2680
PubMed
CAS
Google Scholar
Galburt EA, Chevalier B, Tang W, Jurica MS, Flick KE, Monnat RJ Jr, Stoddard BL (1999) A novel endonuclease mechanism directly visualized for I-PpoI. Nat Struct Biol 6:1096–1099. doi:10.1038/70027
PubMed
CAS
Google Scholar
Galburt EA, Chadsey MS, Jurica MS, Chevalier BS, Erho D, Tang W, Monnat RJ Jr, Stoddard BL (2000) Conformational changes and cleavage by the homing endonuclease I-PpoI: a critical role for a leucine residue in the active site. J Mol Biol 300:877–887
PubMed
CAS
Google Scholar
Eastberg JH, Eklund J, Monnat R Jr, Stoddard BL (2007) Mutability of an HNH nuclease imidazole general base and exchange of a deprotonation mechanism. Biochemistry 46:7215–7225. doi:10.1021/bi700418d
PubMed
CAS
Google Scholar
Eklund JL, Ulge UY, Eastberg J, Monnat RJ Jr (2007) Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease. Nucleic Acids Res 35:5839–5850. doi:gkm624[pii]10.1093/nar/gkm624
PubMed
CAS
Google Scholar
Dunin-Horkawicz S, Feder M, Bujnicki JM (2006) Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genomics 7:98. doi:1471-2164-7-98[pii]10.1186/1471-2164-7-98
PubMed
Google Scholar
Kowalski JC, Belfort M, Stapleton MA, Holpert M, Dansereau JT, Pietrokovski S, Baxter SM, Derbyshire V (1999) Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res 27:2115–2125. doi:gkc361[pii]
PubMed
CAS
Google Scholar
Nord D, Sjoberg BM (2008) Unconventional GIY-YIG homing endonuclease encoded in group I introns in closely related strains of the Bacillus cereus group. Nucleic Acids Res 36:300–310. doi:gkm1016[pii]10.1093/nar/gkm1016
PubMed
CAS
Google Scholar
Derbyshire V, Kowalski JC, Dansereau JT, Hauer CR, Belfort M (1997) Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J Mol Biol 265:494–506
PubMed
CAS
Google Scholar
Bujnicki JM, Rotkiewicz P, Kolinski A, Rychlewski L (2001) Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics. Protein Eng 14:717–721
PubMed
CAS
Google Scholar
Liu Q, Derbyshire V, Belfort M, Edgell DR (2006) Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res 34:1755–1764. doi:34/6/1755[pii]10.1093/nar/gkl079
PubMed
CAS
Google Scholar
Van Roey P, Meehan L, Kowalski JC, Belfort M, Derbyshire V (2002) Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat Struct Biol 9:806–811. doi:10.1038/nsb853nsb853[pii]
PubMed
Google Scholar
Sitbon E, Pietrokovski S (2003) New types of conserved sequence domains in DNA-binding regions of homing endonucleases. Trends Biochem Sci 28:473–477. doi:S0968000403001701[pii]
PubMed
CAS
Google Scholar
Dean AB, Stanger MJ, Dansereau JT, Van Roey P, Derbyshire V, Belfort M (2002) Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Proc Natl Acad Sci USA 99:8554–8561. doi:10.1073/pnas.082253699082253699[pii]
PubMed
CAS
Google Scholar
Liu Q, Dansereau JT, Puttamadappa SS, Shekhtman A, Derbyshire V, Belfort M (2008) Role of the interdomain linker in distance determination for remote cleavage by homing endonuclease I-TevI. J Mol Biol 379:1094–1106. doi:S0022-2836(08)00493-2[pii]10.1016/j.jmb.2008.04.047
PubMed
CAS
Google Scholar
Brok-Volchanskaya VS, Kadyrov FA, Sivogrivov DE, Kolosov PM, Sokolov AS, Shlyapnikov MG, Kryukov VM, Granovsky IE (2008) Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage. Nucleic Acids Res 36:2094–2105. doi:gkn053[pii]10.1093/nar/gkn053
PubMed
CAS
Google Scholar
Carter JM, Friedrich NC, Kleinstiver B, Edgell DR (2007) Strand-specific contacts and divalent metal ion regulate double-strand break formation by the GIY-YIG homing endonuclease I-BmoI. J Mol Biol 374:306–321. doi:S0022-2836(07)01202-8[pii]10.1016/j.jmb.2007.09.027
PubMed
CAS
Google Scholar
Bryk M, Quirk SM, Mueller JE, Loizos N, Lawrence C, Belfort M (1993) The td intron endonuclease I-TevI makes extensive sequence-tolerant contacts across the minor groove of its DNA target. EMBO J 12:4040–4041
PubMed
CAS
Google Scholar
Mueller JE, Smith D, Bryk M, Belfort M (1995) Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J 14:5724–5735
PubMed
CAS
Google Scholar
Ibryashkina EM, Sasnauskas G, Solonin AS, Zakharova MV, Siksnys V (2009) Oligomeric structure diversity within the GIY-YIG nuclease family. J Mol Biol 387:10–16. doi:S0022-2836(09)00098-9[pii]10.1016/j.jmb.2009.01.048
PubMed
CAS
Google Scholar
Chu FK, Maley G, Pedersen-Lane J, Wang AM, Maley F (1990) Characterization of the restriction site of a prokaryotic intron-encoded endonuclease. Proc Natl Acad Sci USA 87:3574–3578
PubMed
CAS
Google Scholar
Bell-Pedersen D, Quirk SM, Bryk M, Belfort M (1991) I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc Natl Acad Sci USA 88:7719–7723
PubMed
CAS
Google Scholar
Van Roey P, Waddling CA, Fox KM, Belfort M, Derbyshire V (2001) Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO J 20:3631–3637. doi:10.1093/emboj/20.14.3631
PubMed
Google Scholar
Edgell DR, Shub DA (2001) Related homing endonucleases I-BmoI and I-TevI use different strategies to cleave homologous recognition sites. Proc Natl Acad Sci USA 98:7898–7903. doi:10.1073/pnas.141222498141222498[pii]
PubMed
CAS
Google Scholar
Bryk M, Belisle M, Mueller JE, Belfort M (1995) Selection of a remote cleavage site by I-tevI, the td intron-encoded endonuclease. J Mol Biol 247:197–210. doi:S0022-2836(84)70133-1[pii]10.1006/jmbi.1994.0133
PubMed
CAS
Google Scholar
Edgell DR, Stanger MJ, Belfort M (2004) Coincidence of cleavage sites of intron endonuclease I-TevI and critical sequences of the host thymidylate synthase gene. J Mol Biol 343:1231–1241. doi:S0022-2836(04)01120-9[pii]10.1016/j.jmb.2004.09.005
PubMed
CAS
Google Scholar
Bonocora RP, Shub DA (2001) A novel group I intron-encoded endonuclease specific for the anticodon region of tRNA(fMet) genes. Mol Microbiol 39:1299–1306. doi:mmi2318[pii]
PubMed
CAS
Google Scholar
Biniszkiewicz D, Cesnaviciene E, Shub DA (1994) Self-splicing group I intron in cyanobacterial initiator methionine tRNA: evidence for lateral transfer of introns in bacteria. EMBO J 13:4629–4635
PubMed
CAS
Google Scholar
Zhao L, Bonocora RP, Shub DA, Stoddard BL (2007) The restriction fold turns to the dark side: a bacterial homing endonuclease with a PD-(D/E)-XK motif. EMBO J 26:2432–2442. doi:7601672[pii]10.1038/sj.emboj.7601672
PubMed
CAS
Google Scholar
Orlowski J, Boniecki M, Bujnicki JM (2007) I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Bioinformatics 23:527–530. doi:btm007[pii]10.1093/bioinformatics/btm007
PubMed
CAS
Google Scholar
Zhao L, Pellenz S, Stoddard BL (2009) Activity and specificity of the bacterial PD-(D/E)XK homing endonuclease I-Ssp6803I. J Mol Biol 385:1498–1510. doi:S0022-2836(08)01406-X[pii]10.1016/j.jmb.2008.10.096
PubMed
CAS
Google Scholar
Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35
PubMed
CAS
Google Scholar
Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750
PubMed
CAS
Google Scholar
Brugmans L, Kanaar R, Essers J (2007) Analysis of DNA double-strand break repair pathways in mice. Mutat Res 614:95–108
PubMed
CAS
Google Scholar
Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404
PubMed
CAS
Google Scholar
van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206
PubMed
Google Scholar
Mimitou EP, Symington LS (2009) Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34:264–272
PubMed
CAS
Google Scholar
Lee GS, Neiditch MB, Salus SS, Roth DB (2004) RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117:171–184
PubMed
CAS
Google Scholar
McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ Jr, Stoddard BL (2009) Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci USA 106:5099–5104
PubMed
CAS
Google Scholar
Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6:398–409. doi:S1568-7864(06)00317-X[pii]10.1016/j.dnarep.2006.10.008
CAS
Google Scholar
Dianov GL, Parsons JL (2007) Co-ordination of DNA single strand break repair. DNA Repair (Amst) 6:454–460. doi:S1568-7864(06)00318-1[pii]10.1016/j.dnarep.2006.10.009
CAS
Google Scholar
Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631. doi:nrg2380[pii]10.1038/nrg2380
PubMed
CAS
Google Scholar
Johnson RD, Jasin M (2001) Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 29:196–201
PubMed
CAS
Google Scholar
Rimseliene R, Maneliene Z, Lubys A, Janulaitis A (2003) Engineering of restriction endonucleases: using methylation activity of the bifunctional endonuclease Eco57I to select the mutant with a novel sequence specificity. J Mol Biol 327:383–391
PubMed
CAS
Google Scholar
Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M (2003) Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 326:65–76
PubMed
CAS
Google Scholar
Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990
PubMed
CAS
Google Scholar
Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973
PubMed
CAS
Google Scholar
Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764
PubMed
CAS
Google Scholar
Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763
PubMed
Google Scholar
Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF 3rd, Segal DJ, Weitzman MD, Cathomen T (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther 12:610–617
PubMed
CAS
Google Scholar
Porteus MH (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13:438–446
PubMed
CAS
Google Scholar
Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705
PubMed
CAS
Google Scholar
Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651
PubMed
CAS
Google Scholar
Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793
PubMed
CAS
Google Scholar
Seligman LM, Stephens KM, Savage JH, Monnat RJ Jr (1997) Genetic analysis of the Chlamydomonas reinhardtii I-CreI mobile intron homing system in Escherichia coli. Genetics 147:1653–1664
PubMed
CAS
Google Scholar
Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7:49–66
PubMed
CAS
Google Scholar
Doyon JB, Pattanayak V, Meyer CB, Liu DR (2006) Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 128:2477–2484
PubMed
CAS
Google Scholar
Chames P, Epinat JC, Guillier S, Patin A, Lacroix E, Paques F (2005) In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 33:e178
PubMed
Google Scholar
Chica RA, Doucet N, Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16:378–384
PubMed
CAS
Google Scholar
Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656–659
PubMed
CAS
Google Scholar
Stary A, Sarasin A (2002) The genetics of the hereditary xeroderma pigmentosum syndrome. Biochimie 84:49–60
PubMed
CAS
Google Scholar
Cleaver JE (2005) Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5:564–573
PubMed
CAS
Google Scholar
Aslan G, Karacal N, Gorgu M (1999) New tumor formation on split-thickness skin grafted areas in xeroderma pigmentosum. Ann Plast Surg 43:657–660
PubMed
CAS
Google Scholar
Sonmez Ergun S (2003) Resurfacing the dorsum of the hand in a patient with Xeroderma pigmentosum. Dermatol Surg 29:782–784
PubMed
Google Scholar
Asselineau D, Bernhard B, Bailly C, Darmon M (1985) Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp Cell Res 159:536–539
PubMed
CAS
Google Scholar
Arnaudeau-Begard C, Brellier F, Chevallier-Lagente O, Hoeijmakers J, Bernerd F, Sarasin A, Magnaldo T (2003) Genetic correction of DNA repair-deficient/cancer-prone xeroderma pigmentosum group C keratinocytes. Hum Gene Ther 14:983–996
PubMed
CAS
Google Scholar
Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23:5012–5019
PubMed
CAS
Google Scholar
Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715
PubMed
CAS
Google Scholar
Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5:1021–1029
CAS
Google Scholar
Pierce AJ, Hu P, Han M, Ellis N, Jasin M (2001) Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15:3237–3242
PubMed
CAS
Google Scholar
Yanez RJ, Porter AC (2002) Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Res 30:740–748
PubMed
CAS
Google Scholar
Di Primio C, Galli A, Cervelli T, Zoppe M, Rainaldi G (2005) Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res 33:4639–4648
PubMed
CAS
Google Scholar
Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102:12265–12269
PubMed
CAS
Google Scholar
Saberi A, Hochegger H, Szuts D, Lan L, Yasui A, Sale JE, Taniguchi Y, Murakawa Y, Zeng W, Yokomori K et al (2007) RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Mol Cell Biol 27:2562–2571
PubMed
CAS
Google Scholar
Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18:93–101
PubMed
CAS
Google Scholar
Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18:4070–4078
PubMed
CAS
Google Scholar
Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445. doi:nature07845[pii]10.1038/nature07845
PubMed
CAS
Google Scholar
Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384
PubMed
CAS
Google Scholar
Muller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100:1302–1309
PubMed
CAS
Google Scholar
Cutler C, Antin JH (2001) Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells 19:108–117
PubMed
CAS
Google Scholar
Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826
PubMed
CAS
Google Scholar
Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301
PubMed
CAS
Google Scholar
Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582
PubMed
CAS
Google Scholar
Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334
PubMed
CAS
Google Scholar
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665
PubMed
CAS
Google Scholar
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419
PubMed
CAS
Google Scholar
Fischer A, Abina SH, Thrasher A, von Kalle C, Cavazzana-Calvo M (2004) LMO2 and gene therapy for severe combined immunodeficiency. N Engl J Med 350:2526–2527 author reply
PubMed
CAS
Google Scholar
Abbott A (2006) Questions linger about unexplained gene-therapy trial death. Nat Med 12:597
PubMed
CAS
Google Scholar
Thrasher AJ, Gaspar HB, Baum C, Modlich U, Schambach A, Candotti F, Otsu M, Sorrentino B, Scobie L, Cameron E et al (2006) Gene therapy: X-SCID transgene leukaemogenicity. Nature 443:E5–E6 discussion E6–E7
CAS
Google Scholar
Lehmann K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol Biol 38:249–303
PubMed
CAS
Google Scholar
Corneo B, Moshous D, Gungor T, Wulffraat N, Philippet P, Le Deist FL, Fischer A, de Villartay JP (2001) Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood 97:2772–2776
PubMed
CAS
Google Scholar
Eastberg JH, McConnell Smith A, Zhao L, Ashworth J, Shen BW, Stoddard BL (2007) Thermodynamics of DNA target site recognition by homing endonucleases. Nucleic Acids Res 35:7209–7221. doi:gkm867[pii]10.1093/nar/gkm867
PubMed
CAS
Google Scholar
Heath PJ, Stephens KM, Monnat RJ Jr, Stoddard BL (1997) The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol 4:468–476
PubMed
CAS
Google Scholar
Silva GH, Dalgaard JZ, Belfort M, Van Roey P (1999) Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 286:1123–1136
PubMed
CAS
Google Scholar
Edgell DR, Derbyshire V, Van Roey P, LaBonne S, Stanger MJ, Li Z, Boyd TM, Shub DA, Belfort M (2004) Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor. Nat Struct Mol Biol 11:936–944
PubMed
CAS
Google Scholar
Seligman LM, Chisholm KM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veillet AL (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30:3870–3879
PubMed
CAS
Google Scholar
Sussman D, Chadsey M, Fauce S, Engel A, Bruett A, Monnat R Jr, Stoddard BL, Seligman LM (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342:31–41
PubMed
CAS
Google Scholar
Rosen LE, Morrison HA, Masri S, Brown MJ, Springstubb B, Sussman D, Stoddard BL, Seligman LM (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34:4791–4800
PubMed
CAS
Google Scholar
Gruen M, Chang K, Serbanescu I, Liu DR (2002) An in vivo selection system for homing endonuclease activity. Nucleic Acids Res 30:e29
PubMed
Google Scholar
Gimble FS, Moure CM, Posey KL (2003) Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J Mol Biol 334:993–1008
PubMed
CAS
Google Scholar
Steuer S, Pingoud V, Pingoud A, Wende W (2004) Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity. Chembiochem 5:206–213
PubMed
CAS
Google Scholar
Silva GH, Belfort M, Wende W, Pingoud A (2006) From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes. J Mol Biol 361:744–754
PubMed
CAS
Google Scholar
Li H, Pellenz S, Ulge U, Stoddard BL, Monnat RJ Jr (2009) Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins. Nucleic Acids Res 37:1650–1662. doi:gkp004[pii]10.1093/nar/gkp004
PubMed
CAS
Google Scholar
Fajardo-Sanchez E, Stricher F, Paques F, Isalan M, Serrano L (2008) Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Res 36:2163–2173
PubMed
CAS
Google Scholar
Smith JG, Sylvestre, Arnould S, Duclert A, Epinat J-C, Prieto J, Redondo P, Blanco F, Bravo J, Montoya G, Pâques F, Duchateau P (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res
Ulbrichova D, Hrdinka M, Saudek V, Martasek P (2009) Acute intermittent porphyria–impact of mutations found in the hydroxymethylbilane synthase gene on biochemical and enzymatic protein properties. Febs J 276:2106–2115
PubMed
CAS
Google Scholar
Wiederholt T, Poblete-Gutierrez P, Gardlo K, Goerz G, Bolsen K, Merk HF, Frank J (2006) Identification of mutations in the uroporphyrinogen III cosynthase gene in German patients with congenital erythropoietic porphyria. Physiol Res 55(Suppl 2):S85–S92
PubMed
CAS
Google Scholar
Romeo G, Levin EY (1969) Uroporphyrinogen 3 cosynthetase in human congenital erythropoietic porphyria. Proc Natl Acad Sci USA 63:856–863
PubMed
CAS
Google Scholar
Mendez M, Sorkin L, Rossetti MV, Astrin KH, del CBAM, Parera VE, Aizencang G, Desnick RJ (1998) Familial porphyria cutanea tarda: characterization of seven novel uroporphyrinogen decarboxylase mutations and frequency of common hemochromatosis alleles. Am J Hum Genet 63:1363–1375
Schmitt C, Gouya L, Malonova E, Lamoril J, Camadro JM, Flamme M, Rose C, Lyoumi S, Da Silva V, Boileau C et al (2005) Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria. Hum Mol Genet 14:3089–3098
PubMed
CAS
Google Scholar
Roberts AG, Puy H, Dailey TA, Morgan RR, Whatley SD, Dailey HA, Martasek P, Nordmann Y, Deybach JC, Elder GH (1998) Molecular characterization of homozygous variegate porphyria. Hum Mol Genet 7:1921–1925
PubMed
CAS
Google Scholar
Rufenacht UB, Gouya L, Schneider-Yin X, Puy H, Schafer BW, Aquaron R, Nordmann Y, Minder EI, Deybach JC (1998) Systematic analysis of molecular defects in the ferrochelatase gene from patients with erythropoietic protoporphyria. Am J Hum Genet 62:1341–1352
PubMed
CAS
Google Scholar
Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ (1989) A review of the molecular genetics of the human alpha-globin gene cluster. Blood 73:1081–1104
PubMed
CAS
Google Scholar
Weiss I, Cash FE, Coleman MB, Pressley A, Adams JG, Sanguansermsri T, Liebhaber SA, Steinberg MH (1990) Molecular basis for alpha-thalassemia associated with the structural mutant hemoglobin Suan-Dok (alpha 2 109leu—arg). Blood 76:2630–2636
PubMed
CAS
Google Scholar
Tassiopoulos S, Deftereos S, Konstantopoulos K, Farmakis D, Tsironi M, Kyriakidis M, Aessopos A (2005) Does heterozygous beta-thalassemia confer a protection against coronary artery disease? Ann NY Acad Sci 1054:467–470
PubMed
Google Scholar
Blouin MJ, Beauchemin H, Wright A, De Paepe M, Sorette M, Bleau AM, Nakamoto B, Ou CN, Stamatoyannopoulos G, Trudel M (2000) Genetic correction of sickle cell disease: insights using transgenic mouse models. Nat Med 6:177–182
PubMed
CAS
Google Scholar
Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604
PubMed
CAS
Google Scholar
Tzall S, Ellenbogen A, Eng F, Hirschhorn R (1989) Identification and characterization of nine RFLPs at the adenosine deaminase (ADA) locus. Am J Hum Genet 44:864–875
PubMed
CAS
Google Scholar
Hirschhorn R, Vawter GF, Kirkpatrick JA Jr, Rosen FS (1979) Adenosine deaminase deficiency: frequency and comparative pathology in autosomally recessive severe combined immunodeficiency. Clin Immunol Immunopathol 14:107–120
PubMed
CAS
Google Scholar
Speckmann C, Pannicke U, Wiech E, Schwarz K, Fisch P, Friedrich W, Niehues T, Gilmour K, Buiting K, Schlesier M et al (2008) Clinical and immunologic consequences of a somatic reversion in a patient with X-linked severe combined immunodeficiency. Blood 112:4090–4097
PubMed
CAS
Google Scholar
Santagata S, Gomez CA, Sobacchi C, Bozzi F, Abinun M, Pasic S, Cortes P, Vezzoni P, Villa A (2000) N-terminal RAG1 frameshift mutations in Omenn’s syndrome: internal methionine usage leads to partial V(D)J recombination activity and reveals a fundamental role in vivo for the N-terminal domains. Proc Natl Acad Sci USA 97:14572–14577
PubMed
CAS
Google Scholar
Tabori U, Mark Z, Amariglio N, Etzioni A, Golan H, Biloray B, Toren A, Rechavi G, Dalal I (2004) Detection of RAG mutations and prenatal diagnosis in families presenting with either T-B- severe combined immunodeficiency or Omenn’s syndrome. Clin Genet 65:322–326
PubMed
CAS
Google Scholar
Notarangelo LD, Mella P, Jones A, de Saint Basile G, Savoldi G, Cranston T, Vihinen M, Schumacher RF (2001) Mutations in severe combined immune deficiency (SCID) due to JAK3 deficiency. Hum Mutat 18:255–263
PubMed
CAS
Google Scholar
Saglio G, Storlazzi CT, Giugliano E, Surace C, Anelli L, Rege-Cambrin G, Zagaria A, Jimenez Velasco A, Heiniger A, Scaravaglio P et al (2002) A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: possible involvement in the genesis of the Philadelphia chromosome translocation. Proc Natl Acad Sci USA 99:9882–9887
PubMed
CAS
Google Scholar
Rae J, Newburger PE, Dinauer MC, Noack D, Hopkins PJ, Kuruto R, Curnutte JT (1998) X-Linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst oxidase. Am J Hum Genet 62:1320–1331
PubMed
CAS
Google Scholar
Li A, Prasad A, Mincemoyer R, Satorius C, Epstein N, Finkel T, Quyyumi AA (1999) Relationship of the C242T p22phox gene polymorphism to angiographic coronary artery disease and endothelial function. Am J Med Genet 86:57–61
PubMed
CAS
Google Scholar
Roos D, de Boer M, Koker MY, Dekker J, Singh-Gupta V, Ahlin A, Palmblad J, Sanal O, Kurenko-Deptuch M, Jolles S et al (2006) Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase. Hum Mutat 27:1218–1229
PubMed
CAS
Google Scholar
Nunoi H, Iwata M, Tatsuzawa S, Onoe Y, Shimizu S, Kanegasaki S, Matsuda I (1995) AG dinucleotide insertion in a patient with chronic granulomatous disease lacking cytosolic 67-kD protein. Blood 86:329–333
PubMed
CAS
Google Scholar
Santacroce R, Acquila M, Belvini D, Castaldo G, Garagiola I, Giacomelli SH, Lombardi AM, Minuti B, Riccardi F, Salviato R et al (2008) Identification of 217 unreported mutations in the F8 gene in a group of 1, 410 unselected Italian patients with hemophilia A. J Hum Genet 53:275–284
PubMed
CAS
Google Scholar
Ljung R, Petrini P, Tengborn L, Sjorin E (2001) Haemophilia B mutations in Sweden: a population-based study of mutational heterogeneity. Br J Haematol 113:81–86
PubMed
CAS
Google Scholar
Rogatko A, Auerbach AD (1988) Segregation analysis with uncertain ascertainment: application to Fanconi anemia. Am J Hum Genet 42:889–897
PubMed
CAS
Google Scholar
Hillmen P, Lewis SM, Bessler M, Luzzatto L, Dacie JV (1995) Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 333:1253–1258
PubMed
CAS
Google Scholar
Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259:990–993
PubMed
CAS
Google Scholar
Stolarski B, Pronicka E, Korniszewski L, Pollak A, Kostrzewa G, Rowinska E, Wlodarski P, Skorka A, Gremida M, Krajewski P et al (2006) Molecular background of polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome in a Polish population: novel AIRE mutations and an estimate of disease prevalence. Clin Genet 70:348–354
PubMed
CAS
Google Scholar
Ahonen P (1985) Autoimmune polyendocrinopathy–candidosis–ectodermal dystrophy (APECED): autosomal recessive inheritance. Clin Genet 27:535–542
PubMed
CAS
Article
Google Scholar
Robertson KD, Jones PA (1999) Tissue-specific alternative splicing in the human INK4a/ARF cell cycle regulatory locus. Oncogene 18:3810–3820
PubMed
CAS
Google Scholar
Kannengiesser C, Dalle S, Leccia MT, Avril MF, Bonadona V, Chompret A, Lasset C, Leroux D, Thomas L, Lesueur F et al (2007) New founder germline mutations of CDKN2A in melanoma-prone families and multiple primary melanoma development in a patient receiving levodopa treatment. Genes Chromosomes Cancer 46:751–760
PubMed
CAS
Google Scholar
Lynch HT, Fusaro RM, Johnson JA (1984) Xeroderma pigmentosum. Complementation group C and malignant melanoma. Arch Dermatol 120:175–179
PubMed
CAS
Google Scholar
Cleaver JE, Thompson LH, Richardson AS, States JC (1999) A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat 14:9–22
PubMed
CAS
Google Scholar
Nichols AF, Ong P, Linn S (1996) Mutations specific to the xeroderma pigmentosum group E Ddb- phenotype. J Biol Chem 271:24317–24320
PubMed
CAS
Google Scholar
Defesche JC, Schuurman EJ, Klaaijsen LN, Khoo KL, Wiegman A, Stalenhoef AF (2008) Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing. Clin Genet 73:573–578
PubMed
CAS
Google Scholar
Yamaguchi S, Brailey LL, Morizono H, Bale AE, Tuchman M (2006) Mutations and polymorphisms in the human ornithine transcarbamylase (OTC) gene. Hum Mutat 27:626–632
PubMed
CAS
Google Scholar
Nyhan WL, Wong DF (1996) New approaches to understanding Lesch-Nyhan disease. N Engl J Med 334:1602–1604
PubMed
CAS
Google Scholar