Skip to main content

Advertisement

Log in

Doxorubicin-mediated apoptosis in glioma cells requires NFAT3

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nuclear factor of activated T cells (NFAT), a family of transcription factors, has been implicated in many cellular processes, including some cancers. Here, we characterize, for the first time, the role of NFAT3 in doxorubicin (DOX)-mediated apoptosis, migration, and invasion in SNB19 and U87 glioma cells. This study demonstrates that the specific knockdown of NFAT3 results in a dramatic inhibition of the apoptotic effect induced by DOX and favors cell survival. Inhibition of NFAT3 activation by shNFAT3 (shNF3) significantly downregulated tumor necrosis factor (TNF)-α induction, its receptor TNFR1, caspase 10, caspase 3, and poly (ADP-ribose) polymerase, abrogating DOX-mediated apoptosis in glioma cells. DOX treatment resulted in NFAT3 translocation to the nucleus. Similarly, shNF3 treatment in SNB19 and U87 cells reversed DOX-induced inhibition of cell migration and invasion, as determined by wound healing and matrigel invasion assays. Taken together, these results indicate that NFAT3 is a prerequisite for the induction of DOX-mediated apoptosis in glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108

    Article  PubMed  Google Scholar 

  2. Campbell JW, Pollack IF, Martinez AJ, Shultz B (1996) High-grade astrocytomas in children: radiologically complete resection is associated with an excellent long-term prognosis. Neurosurgery 38:258–264

    Article  CAS  PubMed  Google Scholar 

  3. Devaux BC, O’Fallon JR, Kelly PJ (1993) Resection, biopsy, and survival in malignant glial neoplasms. A retrospective study of clinical parameters, therapy, and outcome. J Neurosurg 78:767–775

    Article  CAS  PubMed  Google Scholar 

  4. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  5. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  PubMed  Google Scholar 

  6. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    Article  CAS  PubMed  Google Scholar 

  7. Horsley V, Pavlath GK (2002) NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 156:771–774

    Article  CAS  PubMed  Google Scholar 

  8. Hoey T, Sun YL, Williamson K, Xu X (1995) Isolation of two new members of the NFAT gene family and functional characterization of the NFAT proteins. Immunity 2:461–472

    Article  CAS  PubMed  Google Scholar 

  9. Lyakh L, Ghosh P, Rice NR (1997) Expression of NFAT-family proteins in normal human T cells. Mol Cell Biol 17:2475–2484

    CAS  PubMed  Google Scholar 

  10. Benedito AB, Lehtinen M, Massol R, Lopes UG, Kirchhausen T, Rao A, Bonni A (2005) The transcription factor NFAT3 mediates neuronal survival. J Biol Chem 280:2818–2825

    Article  CAS  PubMed  Google Scholar 

  11. Bushdid PB, Osinska H, Waclaw RR, Molkentin JD, Yutzey KE (2003) NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ Res 92:1305–1313

    Article  CAS  PubMed  Google Scholar 

  12. Groth RD, Mermelstein PG (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J Neurosci 23:8125–8134

    CAS  PubMed  Google Scholar 

  13. Kim HB, Kong M, Kim TM, Suh YH, Kim WH, Lim JH, Song JH, Jung MH (2006) NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes 55:1342–1352

    Article  CAS  PubMed  Google Scholar 

  14. Mathew S, Mascareno E, Siddiqui MA (2004) A ternary complex of transcription factors, Nished and NFATc4, and co-activator p300 bound to an intronic sequence, intronic regulatory element, is pivotal for the up-regulation of myosin light chain-2v gene in cardiac hypertrophy. J Biol Chem 279:41018–41027

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Xie X, Zhu X, Zhu J, Hao C, Lu Q, Ding L, Liu Y, Zhou L, Liu Y, Huang C, Wen C, Ye Q (2005) Stimulatory cross-talk between NFAT3 and estrogen receptor in breast cancer cells. J Biol Chem 280:43188–43197

    Article  CAS  PubMed  Google Scholar 

  16. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747

    Article  CAS  PubMed  Google Scholar 

  17. Baksh S, Widlund HR, Frazer-Abel AA, Du J, Fosmire S, Fisher DE, DeCaprio JA, Modiano JF, Burakoff SJ (2002) NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell 10:1071–1081

    Article  CAS  PubMed  Google Scholar 

  18. Cockerill PN, Shannon MF, Bert AG, Ryan GR, Vadas MA (1993) The granulocyte–macrophage colony-stimulating factor/interleukin 3 locus is regulated by an inducible cyclosporin A-sensitive enhancer. Proc Natl Acad Sci USA 90:2466–2470

    Article  CAS  PubMed  Google Scholar 

  19. Iniguez MA, Martinez-Martinez S, Punzon C, Redondo JM, Fresno M (2000) An essential role of the nuclear factor of activated T cells in the regulation of the expression of the cyclooxygenase-2 gene in human T lymphocytes. J Biol Chem 275:23627–23635

    Article  CAS  PubMed  Google Scholar 

  20. McCaffrey PG, Goldfeld AE, Rao A (1994) The role of NFATp in cyclosporin A-sensitive tumor necrosis factor-alpha gene transcription. J Biol Chem 269:30445–30450

    CAS  PubMed  Google Scholar 

  21. Shannon MF, Coles LS, Vadas MA, Cockerill PN (1997) Signals for activation of the GM-CSF promoter and enhancer in T cells. Crit Rev Immunol 17:301–323

    CAS  PubMed  Google Scholar 

  22. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109[Suppl]:S67–S79

    Article  CAS  PubMed  Google Scholar 

  23. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  CAS  PubMed  Google Scholar 

  24. Tan C, Etcubanas E, Wollner N, Rosen G, Gilladoga A, Showel J, Murphy ML, Krakoff IH (1973) Adriamycin—an antitumor antibiotic in the treatment of neoplastic diseases. Cancer 32:9–17

    Article  CAS  PubMed  Google Scholar 

  25. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  CAS  PubMed  Google Scholar 

  26. Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    Article  CAS  PubMed  Google Scholar 

  27. Jung K, Reszka R (2001) Mitochondria as subcellular targets for clinically useful anthracyclines. Adv Drug Deliv Rev 49:87–105

    Article  CAS  PubMed  Google Scholar 

  28. Wolff JE, Trilling T, Molenkamp G, Egeler RM, Jurgens H (1999) Chemosensitivity of glioma cells in vitro: a meta-analysis. J Cancer Res Clin Oncol 125:481–486

    Article  CAS  PubMed  Google Scholar 

  29. Niiya M, Niiya K, Kiguchi T, Shibakura M, Asaumi N, Shinagawa K, Ishimaru F, Kiura K, Ikeda K, Ueoka H, Tanimoto M (2003) Induction of TNF-alpha, uPA, IL-8 and MCP-1 by doxorubicin in human lung carcinoma cells. Cancer Chemother Pharmacol 52:391–398

    Article  PubMed  Google Scholar 

  30. Cao W, Chi WH, Wang J, Tang JJ, Lu YJ (2005) TNF-alpha promotes doxorubicin-induced cell apoptosis and anti-cancer effect through downregulation of p21 in p53-deficient tumor cells. Biochem Biophys Res Commun 330:1034–1040

    Article  CAS  PubMed  Google Scholar 

  31. Kalivendi SV, Konorev EA, Cunningham S, Vanamala SK, Kaji EH, Joseph J, Kalyanaraman B (2005) Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem J 389:527–539

    Article  CAS  PubMed  Google Scholar 

  32. Huang X, Adams MD, Zhou H, Kerlavage AR (1997) A tool for analyzing and annotating genomic sequences. Genomics 46:37–45

    Article  CAS  PubMed  Google Scholar 

  33. Lakka SS, Rajan M, Gondi CS, Yanamandra N, Chandrasekar N, Jasti SL, Adachi Y, Siddique K, Gujrati M, Olivero W, Dinh DH, Kouraklis G, Kyritsis AP, Rao JS (2002) Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene 21:8011–8019

    Article  CAS  PubMed  Google Scholar 

  34. Yan Y, Li J, Ouyang W, Ma Q, Hu Y, Zhang D, Ding J, Qu Q, Subbaramaiah K, Huang C (2006) NFAT3 is specifically required for TNF-alpha-induced cyclooxygenase-2 (COX-2) expression and transformation of Cl41 cells. J Cell Sci 119:2985–2994

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Song L, Zhang D, Wei L, Huang C (2006) Knockdown of NFAT3 blocked TPA-induced COX-2 and iNOS expression, and enhanced cell transformation in Cl41 cells. J Cell Biochem 99:1010–1020

    Article  CAS  PubMed  Google Scholar 

  36. Kuwano T, Nakao S, Yamamoto H, Tsuneyoshi M, Yamamoto T, Kuwano M, Ono M (2004) Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J 18:300–310

    Article  CAS  PubMed  Google Scholar 

  37. Mann M, Sheng H, Shao J, Williams CS, Pisacane PI, Sliwkowski MX, DuBois RN (2001) Targeting cyclooxygenase 2 and HER-2/neu pathways inhibits colorectal carcinoma growth. Gastroenterology 120:1713–1719

    Article  CAS  PubMed  Google Scholar 

  38. Sheng H, Shao J, DuBois RN (2001) K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res 61:2670–2675

    CAS  PubMed  Google Scholar 

  39. Ranger AM, Gerstenfeld LC, Wang J, Kon T, Bae H, Gravallese EM, Glimcher MJ, Glimcher LH (2000) The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis. J Exp Med 191:9–22

    Article  CAS  PubMed  Google Scholar 

  40. Yang TT, Xiong Q, Enslen H, Davis RJ, Chow CW (2002) Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol Cell Biol 22:3892–3904

    Article  CAS  PubMed  Google Scholar 

  41. Viola JP, Carvalho LD, Fonseca BP, Teixeira LK (2005) NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res 38:335–344

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Wang X, Li J, Zhu J, Xie X, Yuan B, Yang Z, Zeng M, Jiang Z, Li J, Huang C, Ye Q (2007) Tissue type-specific modulation of ER transcriptional activity by NFAT3. Biochem Biophys Res Commun 353:576–581

    Article  CAS  PubMed  Google Scholar 

  43. Zhu H, Gao W, Jiang H, Wu J, Shi YF, Zhang XJ (2007) Calcineurin mediates acetylcholinesterase expression during calcium ionophore A23187-induced HeLa cell apoptosis. Biochim Biophys Acta 1773:593–602

    Article  CAS  PubMed  Google Scholar 

  44. Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4:565–573

    Article  CAS  PubMed  Google Scholar 

  45. Chuvpilo S, Jankevics E, Tyrsin D, Akimzhanov A, Moroz D, Jha MK, Schulze-Luehrmann J, Santner-Nanan B, Feoktistova E, Konig T, Avots A, Schmitt E, Berberich-Siebelt F, Schimpl A, Serfling E (2002) Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 16:881–895

    Article  CAS  PubMed  Google Scholar 

  46. Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284:156–159

    Article  CAS  PubMed  Google Scholar 

  47. Rivera A, Maxwell SA (2005) The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 280:29346–29354

    Article  CAS  PubMed  Google Scholar 

  48. Liao W, Wang S, Han C, Zhang Y (2005) 14-3-3 proteins regulate glycogen synthase 3beta phosphorylation and inhibit cardiomyocyte hypertrophy. FEBS J 272:1845–1854

    Article  CAS  PubMed  Google Scholar 

  49. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406

    Article  CAS  PubMed  Google Scholar 

  50. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR (1988) Identification of a putative regulator of early T cell activation genes. Science 241:202–205

    Article  CAS  PubMed  Google Scholar 

  51. Yaghi A, Sims SM (2005) Constrictor-induced translocation of NFAT3 in human and rat pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol 289:L1061–L1074

    Article  CAS  PubMed  Google Scholar 

  52. Caetano MS, Vieira-de-Abreu A, Teixeira LK, Werneck MB, Barcinski MA, Viola JP (2002) NFATC2 transcription factor regulates cell cycle progression during lymphocyte activation: evidence of its involvement in the control of cyclin gene expression. FASEB J 16:1940–1942

    CAS  PubMed  Google Scholar 

  53. Graef IA, Wang F, Charron F, Chen L, Neilson J, Tessier-Lavigne M, Crabtree GR (2003) Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113:657–670

    Article  CAS  PubMed  Google Scholar 

  54. Hernandez GL, Volpert OV, Iniguez MA, Lorenzo E, Martinez-Martinez S, Grau R, Fresno M, Redondo JM (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 193:607–620

    Article  CAS  PubMed  Google Scholar 

  55. Zaichuk TA, Shroff EH, Emmanuel R, Filleur S, Nelius T, Volpert OV (2004) Nuclear factor of activated T cells balances angiogenesis activation and inhibition. J Exp Med 199:1513–1522

    Article  CAS  PubMed  Google Scholar 

  56. Baksh S, DeCaprio JA, Burakoff SJ (2000) Calcineurin regulation of the mammalian G0/G1 checkpoint element, cyclin dependent kinase 4. Oncogene 19:2820–2827

    Article  CAS  PubMed  Google Scholar 

  57. Anraku Y, Ohya Y, Iida H (1991) Cell cycle control by calcium and calmodulin in Saccharomyces cerevisiae. Biochim Biophys Acta 1093:169–177

    Article  CAS  PubMed  Google Scholar 

  58. Lipskaia L, Lompre AM (2004) Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell 96:55–68

    Article  CAS  PubMed  Google Scholar 

  59. Terada N, Lucas JJ, Gelfand EW (1991) Differential regulation of the tumor suppressor molecules, retinoblastoma susceptibility gene product (Rb) and p53, during cell cycle progression of normal human T cells. J Immunol 147:698–704

    CAS  PubMed  Google Scholar 

  60. Tomono M, Toyoshima K, Ito M, Amano H (1996) Calcineurin is essential for DNA synthesis in Swiss 3T3 fibroblasts. Biochem J 317(Pt 3):675–680

    CAS  PubMed  Google Scholar 

  61. Tomono M, Toyoshima K, Ito M, Amano H, Kiss Z (1998) Inhibitors of calcineurin block expression of cyclins A and E induced by fibroblast growth factor in Swiss 3T3 fibroblasts. Arch Biochem Biophys 353:374–378

    Article  CAS  PubMed  Google Scholar 

  62. Neal JW, Clipstone NA (2003) A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J Biol Chem 278:17246–17254

    Article  CAS  PubMed  Google Scholar 

  63. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  CAS  PubMed  Google Scholar 

  64. Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A (2002) The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 4:540–544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Cancer Institute Grants CA75557, CA116708, CA138409 (to JSR). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. We thank Shellee Abraham for helping in manuscript preparation, and Diana Meister and Sushma Jasti for manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasti S. Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2009_157_MOESM1_ESM.tif

Supplementary Fig. 1. Western blot analysis of AIF, p53, and cleaved BID. Immunoblot analysis of total protein from SNB19 and U87 cells after transfection with pSV or shNF3 and/or DOX. Proteins were probed for AIF, p53, and cleaved BID. The expression of these molecules was unaffected with the treatments Supplementary material 1 (TIFF 1509 kb) (TIFF 1509 kb)

18_2009_157_MOESM2_ESM.tif

Supplementary Fig. 2. TNF-α induces apoptosis by upregulating caspase 10 expression and PARP cleavage. Cell lysates were collected from SNB19 and U87 after transfection with SV or shNF3, and treatment with or without TNF-α. Western blot analysis of 50 μg of total cell lysates was performed to check the expression of caspase 10 and PARP. GAPDH was used as a loading control. TNF-α treatment increased the expression of these molecules irrespective of other treatments

18_2009_157_MOESM3_ESM.tif

Supplementary Fig. 3. DOX treatment leads to NFAT3 activation. Cytoplasmic (Cy) and nuclear extracts (Nu) from SNB19 and U87 cells transfected with SV or shNF3 and treated with or without DOX were immunoblotted and probed with anti-phospho NFAT3 antibody and anti-NFAT3 antibody, respectively. When nuclear extracts were probed with anti-NFAT3 antibody, the DOX treatment showed increased expression as compared to the control and no expression with the shNF3 treatment. Similarly, the cytoplasmic extracts, when probed with phospho-NFAT3, showed decreased expression of NFAT3 as compared to the control and less or no expression in the shNF3 treatment

18_2009_157_MOESM4_ESM.tif

Supplementary Fig. 4. DOX induces apoptosis in a dose-dependent manner. SNB 19 and U87 cells were treated with various concentrations of DOX (0.25, 0.5, 0.75, 1.0 μM). DNA content of control and DOX-treated SNB19 and U87 cells were measured by flow cytometric analysis to determine the cell cycle progression and apoptosis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopinath, S., Vanamala, S.K., Gujrati, M. et al. Doxorubicin-mediated apoptosis in glioma cells requires NFAT3. Cell. Mol. Life Sci. 66, 3967–3978 (2009). https://doi.org/10.1007/s00018-009-0157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0157-5

Keywords

Navigation