Skip to main content
Log in

Activation and repression of prion protein expression by key regions of intron 1

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Expression of the prion protein is necessary for infection with prion diseases. Altered expression levels may play an important role in susceptibility to infection. Therefore, understanding the mechanisms that regulate prion protein expression is of great importance. It was previously shown that expression of the prion protein is to some degree regulated by an alternative promoter within intron 1. Studies using GFP and luciferase reporter systems were undertaken to determine key sites for the repression and activation of expression of the prion protein driven by intron 1. We identified a region within intron 1 sufficient to drive prion protein expression. Our findings highlight two potential repressor regions. Both regions have binding sites for the known repressor Hes-1. Hes-1 overexpression caused a dramatic decrease in PrP protein expression. Additionally, we have identified Atox-1 as a transcription factor that upregulates prion protein expression. These findings clearly indicate that intron 1 plays a key role in regulation of prion protein expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  PubMed  Google Scholar 

  2. Büeler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  PubMed  Google Scholar 

  3. Mallucci G, Dickinson A, Linehan J, Klöhn P-C, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874

    Article  CAS  PubMed  Google Scholar 

  4. Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15:1255–1264

    CAS  PubMed  Google Scholar 

  5. Li G, Bolton D (1997) A novel hamster prion protein mRNA contains an extra exon: increased expression in scrapie. Brain Res 751:265–274

    Article  CAS  PubMed  Google Scholar 

  6. Lee IY, Westaway D, Smit AFA, Wang K, Seto J, Chen L, Acharya C, Ankener M, Baskin D, Cooper C, Yao H, Prusiner SB, Hood LE (1998) Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res 8:1022–1037

    CAS  PubMed  Google Scholar 

  7. Haigh CL, Wright JA, Brown DR (2007) Regulation of prion protein expression by non coding regions of the Prnp gene. J Mol Biol 368:915–927

    Article  CAS  PubMed  Google Scholar 

  8. Inoue S, Tanaka M, Horiuchi M, Ishiguro N, Shinagawa M (1997) Characterisation of the bovine prion protein gene: the expression requires interaction between the promoter and intron. J Vet Med Sci 59:175–183

    Article  CAS  PubMed  Google Scholar 

  9. Bellingham SA, Coleman LA, Masters CL, Camakaris J, Hill AF (2009) Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1. J Biol Chem 284:1291–1301

    Article  CAS  PubMed  Google Scholar 

  10. Burgess ST, Shen C, Ferguson LA, O’Neill GT, Docherty K, Hunter N, Goldmann W (2009) Identification of adjacent binding sites for the YY1 and E4BP4 transcription factors in the ovine PrP (Prion) gene promoter. J Biol Chem 284:6716–6724

    Article  CAS  PubMed  Google Scholar 

  11. Shyu WC, Kao MC, Chou WY, Hsu YD, Soong BW (2000) Heat shock modulates prion protein expression in human NT-2 cells. Mol Neurosci 11:771–774

    CAS  Google Scholar 

  12. Shyu WC, Harn HJ, Saeki K, Kubosaki A, Matsumoto Y, Onodera T, Chen CJ, Hsu YD, Chiang YH (2002) Molecular modulation of expression of prion protein by heat shock. Mol Neurobiol 26:1–12

    Article  CAS  PubMed  Google Scholar 

  13. Wang V, Chuang TC, Hsu YD, Chou WY, Kao MC (2005) Nitric oxide induces prion protein via MEK and p38 MAPK signalling. Biochem Biophys Res Comm 333:95–100

    Article  CAS  PubMed  Google Scholar 

  14. Shyu WC, Lin SZ, Saeki K, Kubosaki A, Matsumoto Y, Onodera T, Chiang MF, Thajeb P, Li H (2004) Hyperbaric oxygen enhances the expression of prion protein and heat shock protein 70 in a mouse neuroblastoma cell line. Cell Mol Neurobiol 24:257–268

    Article  CAS  PubMed  Google Scholar 

  15. Shyu WC, Chen CP, Saeki K, Kubosaki A, Matsumoto Y, Onodera T, Ding DC, Chiang MF, Lee YJ, Lin SZ, Li H (2005) Hypoglycaemia enhances the expression of prion protein and heat-shock protein 70 in a mouse neuroblastoma cell line. J Neurosci Res 80:887–894

    Article  CAS  PubMed  Google Scholar 

  16. Qin K, Zhao L, Ash RD, McDonough WF, Zhao RY (2009) ATM-mediated transcriptional elevation of prion in response to copper-induced oxidative stress. J Biol Chem 284:4582–4593

    Article  CAS  PubMed  Google Scholar 

  17. Rybner C, Hilion J, Sahraoui T, Lanotte M, Botti J (2002) All-trans retinoic acid down-regulates prion protein expression independently of granulocyte maturation. Leukaemia 16:940–948

    Article  CAS  Google Scholar 

  18. Holme A, Daniels M, Sassoon J, Brown DR (2003) A novel method of generating neuronal cell lines from gene-knockout mice to study prion protein membrane orientation. Eur J Neurosci 18:571–579

    Article  PubMed  Google Scholar 

  19. Lenhard B, Sandelin A, Mendoza L, Engström P, Jareborg N, Wasserman WW (2003) Identification of conserved regulatory elements by comparative genome analysis. J Biol 2:13

    Article  PubMed  Google Scholar 

  20. Brown DR, Schmidt B, Kretzschmar HA (1997) Expression of prion protein in PC12 is enhanced by exposure to oxidative stress. Int J Dev Neurosci 15:961–972

    Article  CAS  PubMed  Google Scholar 

  21. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029

    Article  CAS  PubMed  Google Scholar 

  22. Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z, Schaffner W (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12:1355–1362

    CAS  PubMed  Google Scholar 

  23. Itoh S, Kim HW, Nakagawa O, Ozumi K, Lessner SM, Aoki H, Akram K, McKinney RD, Ushio-Fukai M, Fukai T (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167

    Article  CAS  PubMed  Google Scholar 

  24. Kotomura N, Ninomiya Y, Umesono K, Niwa O (1997) Transcriptional regulation by competition between ELP isoforms and nuclear receptors. Biochem Biophys Res Comm 230:407–412

    Article  CAS  PubMed  Google Scholar 

  25. Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M, Dobbelstein M, Del Sal G, Piaggio G, Mantovani R (2005) Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25:3737–3751

    Article  CAS  PubMed  Google Scholar 

  26. Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R, Eilers M (1995) Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J 14:1508–1519

    CAS  PubMed  Google Scholar 

  27. Takebayashi K, Sasai Y, Sakai Y, Watanabe T, Nakanishi S, Kageyama R (1994) Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. Negative autoregulation through the multiple N box elements. J Biol Chem 269:5150–5156

    CAS  PubMed  Google Scholar 

  28. Funke-Kaiser H, Theis S, Behrouzi T, Thomas A, Scheuch K, Zollmann FS, Paterka M, Paul M, Orzechowski HD (2001) Functional characterization of the human prion protein promoter in neuronal and endothelial cells. J Mol Med 79:529–535

    Article  CAS  PubMed  Google Scholar 

  29. Mahal SP, Asante EA, Antoniou M, Collinge J (2001) Isolation and functional characterisation of the promoter region of the human prion protein gene. Gene 268:105–114

    Article  CAS  PubMed  Google Scholar 

  30. Brown DR (2004) Role of the prion protein in copper turnover in astrocytes. Neurobiol Dis 15:534–543

    Article  CAS  PubMed  Google Scholar 

  31. Armendariz AD, Gonzalez M, Loguinov AV, Vulpe CD (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and APP. Physiol Genomics 20:45–54

    Article  CAS  PubMed  Google Scholar 

  32. Varela-Nallar L, Toledo EM, Larrondo LF, Cabral AL, Martins VR, Inestrosa NC (2006) Induction of cellular prion protein gene expression by copper in neurons. Am J Physiol Cell Physiol 290:C271–C281

    Article  CAS  PubMed  Google Scholar 

  33. Naeve GS, Vana AM, Eggold JR, Kelner GS, Maki R, Desouza EB, Foster AC (1999) Expression profile of the copper homeostasis gene, rAtox1, in the rat brain. Neuroscience 93:1179–1187

    Article  CAS  PubMed  Google Scholar 

  34. Muller PA, Klomp LW (2009) ATOX1: a novel copper-responsive transcription factor in mammals? Int J Biochem Cell Biol 41:1233–1236

    Article  CAS  PubMed  Google Scholar 

  35. Itoh S, Ozumi K, Kim HW, Nakagawa O, McKinney RD, Folz RJ, Zelko IN, Ushio-Fukai M, Fukai T (2009) Novel mechanism for regulation of extracellular SOD transcription and activity by copper: role of antioxidant-1. Free Radic Biol Med 46:95–104

    Article  CAS  PubMed  Google Scholar 

  36. Kralovicova S, Fontaine SN, Alderton A, Alderman J, Ragnarsdottir KV, Collins SJ, Brown DR (2009) The effects of prion protein expression on metal metabolism. Mol Cell Neurosci 41:135–147

    Article  CAS  PubMed  Google Scholar 

  37. McCormack JE, Baybutt HN, Everington D, Will RG, Ironside JW, Manson JC (2002) PRNP contains both intronic and upstream regulatory regions that may influence susceptibility to Creutzfeldt-Jakob disease. Gene 288:139–146

    Article  CAS  PubMed  Google Scholar 

  38. Seabury CM, Womack JE, Piedrahita J, Derr JN (2004) Comparative PRNP genotyping of US cattle sires for potential association with BSE. Mamm Genome 15:828–833

    Article  CAS  PubMed  Google Scholar 

  39. Nakamitsu S, Miyazawa T, Horiuchi M, Onoe S, Ohoba Y, Kitagawa H, Ishiguro N (2006) Sequence variation of bovine prion protein gene in Japanese cattle (Holstein and Japanese Black). J Vet Med Sci 68:27–33

    Article  CAS  PubMed  Google Scholar 

  40. Kerber AR, Hepp D, Passos DT, de Azevedo Weimer T (2008) Polymorphisms of two indels at the PRNP gene in three beef cattle herds. Biochem Genet 46:1–7

    Article  CAS  PubMed  Google Scholar 

  41. Li R, Liu T, Wong B-S, Pan T, Morillas M, Swietnicki W, O'Rourke K et al (2000) Identification of an epitope in the C terminus of normal prion protein whose expression is modulated by binding events in the N terminus. J Mol Biol 301:567–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J.A., McHugh, P.C., Stockbridge, M. et al. Activation and repression of prion protein expression by key regions of intron 1. Cell. Mol. Life Sci. 66, 3809–3820 (2009). https://doi.org/10.1007/s00018-009-0154-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0154-8

Keywords

Navigation