Koob GF (2003) Alcoholism: allostasis and beyond. Alcohol Clin Exp Res 27:232–243
CAS
PubMed
Google Scholar
Andreasen NC, Black DW (2006) Introductory textbook of psychiatry. American Psychiatric Publication, Washington
Google Scholar
Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128
CAS
PubMed
Google Scholar
Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476
CAS
PubMed
Google Scholar
Pandey SC (2004) The gene transcription factor cyclic AMP-responsive element binding protein: role in positive and negative affective states of alcohol addiction. Pharmacol Ther 104:47–58
CAS
PubMed
Google Scholar
Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103:121–146
CAS
PubMed
Google Scholar
Conway KP, Compton W, Stinson FS, Grant BF (2006) Lifetime comorbidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 67:247–257
CAS
PubMed
Google Scholar
Schuckit MA, Hesselbrock V (1994) Alcohol dependence and anxiety disorders: what is the relationship? Am J Psychiatry 151:1723–1734
CAS
PubMed
Google Scholar
Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445
CAS
PubMed
Google Scholar
Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705
CAS
PubMed
Google Scholar
Morrow AL, Ferrani-Kile K, Davis MI, Shumilla JA, Kumar S, Maldve R, Pandey SC (2004) Ethanol effects on cell signaling mechanisms. Alcohol Clin Exp Res 28:217–227
CAS
PubMed
Google Scholar
Harris RA, Trudell JR, Mihic SJ (2008) Ethanol’s molecular targets. Sci Signal 1, re7
Heilig M, Koob GF (2007) A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci 30:399–406
CAS
PubMed
Google Scholar
Thorsell A (2008) Central neuropeptide Y in anxiety- and stress-related behavior and in ethanol intake. Ann N Y Acad Sci 1148:136–140
CAS
PubMed
Article
Google Scholar
Davis MI (2008) Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 118:36–57
CAS
PubMed
Google Scholar
Pandey SC, Zhang H, Ugale R, Prakash A, Xu T, Misra K (2008) Effector immediate-early gene Arc in the amygdala plays a critical role in alcoholism. J Neurosci 28:2589–2600
CAS
PubMed
Google Scholar
Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zakhari S (2008) Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 32:1525–1534
CAS
PubMed
Google Scholar
Pandey SC, Ugale R, Zhang H, Tang L, Prakash A (2008) Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 28:3729–3737
CAS
PubMed
Google Scholar
Abel T, Kandel E (1998) Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Res Brain Res Rev 26:360–378
CAS
PubMed
Google Scholar
Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145
CAS
PubMed
Google Scholar
Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861
CAS
PubMed
Google Scholar
Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859
CAS
PubMed
Google Scholar
Li TK, Lumeng L, Doolittle DP (1993) Selective breeding for alcohol preference and associated responses. Behav Genet 23:163–170
CAS
PubMed
Google Scholar
Pandey SC, Mittal N, Lumeng L, Li TK (1999) Involvement of the cyclic AMP-responsive element binding protein gene transcription factor in genetic preference for alcohol drinking behavior. Alcohol Clin Exp Res 23:1425–1434
CAS
PubMed
Google Scholar
Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ (2006) The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 11:270–288
PubMed
Google Scholar
Pandey SC, Zhang H, Roy A, Xu T (2005) Deficits in amygdaloid cAMP-responsive element-binding protein signaling play a role in genetic predisposition to anxiety and alcoholism. J Clin Invest 115:2762–2773
CAS
PubMed
Google Scholar
Pandey SC, Roy A, Zhang H, Xu T (2004) Partial deletion of the cAMP response element-binding protein gene promotes alcohol-drinking behaviors. J Neurosci 24:5022–5030
CAS
PubMed
Google Scholar
Pandey SC, Roy A, Zhang H (2003) The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats. Alcohol Clin Exp Res 27:396–409
CAS
PubMed
Google Scholar
Yang X, Horn K, Wand GS (1998) Chronic ethanol exposure impairs phosphorylation of CREB and CRE-binding activity in rat striatum. Alcohol Clin Exp Res 22:382–390
CAS
PubMed
Google Scholar
Yang X, Diehl AM, Wand GS (1996) Ethanol exposure alters the phosphorylation of cyclic AMP responsive element binding protein and cyclic AMP responsive element binding activity in rat cerebellum. J Pharmacol Exp Ther 278:338–346
CAS
PubMed
Google Scholar
Yang X, Horn K, Baraban JM, Wand GS (1998) Chronic ethanol administration decreases phosphorylation of cyclic AMP response element-binding protein in granule cells of rat cerebellum. J Neurochem 70:224–232
CAS
PubMed
Google Scholar
Pandey SC, Zhang D, Mittal N, Nayyar D (1999) Potential role of the gene transcription factor cyclic AMP-responsive element binding protein in ethanol withdrawal-related anxiety. J Pharmacol Exp Ther 288:866–878
CAS
PubMed
Google Scholar
Pandey SC, Roy A, Mittal N (2001) Effects of chronic ethanol intake and its withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat cortex. J Pharmacol Exp Ther 296:857–868
CAS
PubMed
Google Scholar
Li J, Li YH, Yuan XR (2003) Changes of phosphorylation of cAMP response element binding protein in rat nucleus accumbens after chronic ethanol intake: naloxone reversal. Acta Pharmacol Sin 24:930–936
PubMed
Google Scholar
Misra K, Roy A, Pandey SC (2001) Effects of voluntary ethanol intake on the expression of Ca2+/calmodulin-dependent protein kinase IV and on CREB expression and phosphorylation in the rat nucleus accumbens. Neuroreport 12:4133–4137
CAS
PubMed
Google Scholar
Misra K, Pandey SC (2003) Differences in basal levels of CREB and NPY in nucleus accumbens regions between C57BL/6 and DBA/2 mice differing in inborn alcohol drinking behavior. J Neurosci Res 74:967–975
CAS
PubMed
Google Scholar
Belknap JK, Crabbe JC, Young ER (1993) Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology (Berl) 112:503–510
CAS
Google Scholar
Wang Y, Ghezzi A, Yin JC, Atkinson NS (2009) CREB regulation of BK channel gene expression underlies rapid drug tolerance. Genes Brain Behav 8:369–376
CAS
PubMed
Google Scholar
Yang X, Oswald L, Wand G (2003) The cyclic AMP/protein kinase A signal transduction pathway modulates tolerance to sedative and hypothermic effects of ethanol. Alcohol Clin Exp Res 27:1220–1225
CAS
PubMed
Google Scholar
Zou J, Crews F (2006) CREB and NF-κB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:385–405
CAS
PubMed
Google Scholar
Chandler LJ, Sutton G (2005) Acute ethanol inhibits extracellular signal-regulated kinase, protein kinase B, and adenosine 3′:5′-cyclic monophosphate response element binding protein activity in an age- and brain region-specific manner. Alcohol Clin Exp Res 29:672–682
CAS
PubMed
Google Scholar
Acquaah-Mensah GK, Misra V, Biswal S (2006) Ethanol sensitivity: a central role for CREB transcription regulation in the cerebellum. BMC Genomics 7:308
PubMed
Google Scholar
Narahashi T, Kuriyama K, Illes P, Wirkner K, Fischer W, Muhlberg K, Scheibler P, Allgaier C, Minami K, Lovinger D, Lallemand F, Ward RJ, DeWitte P, Itatsu T, Takei Y, Oide H, Hirose M, Wang XE, Watanabe S, Tateyama M, Ochi R, Sato N (2001) Neuroreceptors and ion channels as targets of alcohol. Alcohol Clin Exp Res 25:182S–188S
CAS
PubMed
Google Scholar
Vengeliene V, Bilbao A, Molander A, Spanagel R (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154:299–315
CAS
PubMed
Google Scholar
Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724
CAS
PubMed
Google Scholar
Nestoros JN (1980) Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science 209:708–710
CAS
PubMed
Google Scholar
Peoples RW, Weight FF (1995) Cutoff in potency implicates alcohol inhibition of n-methyl-d-aspartate receptors in alcohol intoxication. Proc Natl Acad Sci USA 92:2825–2829
CAS
PubMed
Google Scholar
Ren H, Salous AK, Paul JM, Lipsky RH, Peoples RW (2007) Mutations at F637 in the NMDA receptor NR2A subunit M3 domain influence agonist potency, ion channel gating and alcohol action. Br J Pharmacol 151:749–757
CAS
PubMed
Google Scholar
Ronald KM, Mirshahi T, Woodward JJ (2001) Ethanol inhibition of n-methyl-d-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue. J Biol Chem 276:44729–44735
CAS
PubMed
Google Scholar
Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47
CAS
PubMed
Google Scholar
Smothers CT, Clayton R, Blevins T, Woodward JJ (2001) Ethanol sensitivity of recombinant human n-methyl-d-aspartate receptors. Neurochem Int 38:333–340
CAS
PubMed
Google Scholar
Nagy J (2004) The NR2B subtype of NMDA receptor: a potential target for the treatment of alcohol dependence. Curr Drug Targets CNS Neurol Disord 3:169–179
CAS
PubMed
Google Scholar
Rani CS, Qiang M, Ticku MK (2005) Potential role of cAMP response element-binding protein in ethanol-induced n-methyl-d-aspartate receptor 2B subunit gene transcription in fetal mouse cortical cells. Mol Pharmacol 67:2126–2136
CAS
PubMed
Google Scholar
Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1–11
CAS
PubMed
Google Scholar
Netzeband JG, Gruol DL (1995) Modulatory effects of acute ethanol on metabotropic glutamate responses in cultured Purkinje neurons. Brain Res 688:105–113
CAS
PubMed
Google Scholar
Minami K, Gereau RW 4th, Minami M, Heinemann SF, Harris RA (1998) Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 53:148–156
CAS
PubMed
Google Scholar
Gass JT, Olive MF (2009) Role of protein kinase C epsilon (PKCε) in the reduction of ethanol reinforcement due to mGluR5 antagonism in the nucleus accumbens shell. Psychopharmacology (Berl) 204:587–597
CAS
Google Scholar
Schroeder JP, Overstreet DH, Hodge CW (2005) The mGluR5 antagonist MPEP decreases operant ethanol self-administration during maintenance and after repeated alcohol deprivations in alcohol-preferring (P) rats. Psychopharmacology (Berl) 179:262–270
CAS
Google Scholar
McMillen BA, Crawford MS, Kulers CM, Williams HL (2005) Effects of a metabotropic, mGlu5, glutamate receptor antagonist on ethanol consumption by genetic drinking rats. Alcohol Alcohol 40:494–497
CAS
PubMed
Google Scholar
Hodge CW, Miles MF, Sharko AC, Stevenson RA, Hillmann JR, Lepoutre V, Besheer J, Schroeder JP (2006) The mGluR5 antagonist MPEP selectively inhibits the onset and maintenance of ethanol self-administration in C57BL/6J mice. Psychopharmacology (Berl) 183:429–438
CAS
Google Scholar
Mermelstein PG, Bito H, Deisseroth K, Tsien RW (2000) Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J Neurosci 20:266–273
CAS
PubMed
Google Scholar
Mullikin-Kilpatrick D, Mehta ND, Hildebrandt JD, Treistman SN (1995) Gi is involved in ethanol inhibition of l-type calcium channels in undifferentiated but not differentiated PC-12 cells. Mol Pharmacol 47:997–1005
CAS
PubMed
Google Scholar
Katsura M, Shibasaki M, Hayashida S, Torigoe F, Tsujimura A, Ohkuma S (2006) Increase in expression of α1 and α2/δ1 subunits of l-type high voltage-gated calcium channels after sustained ethanol exposure in cerebral cortical neurons. J Pharmacol Sci 102:221–230
CAS
PubMed
Google Scholar
Walter HJ, McMahon T, Dadgar J, Wang D, Messing RO (2000) Ethanol regulates calcium channel subunits by protein kinase C δ-dependent and -independent mechanisms. J Biol Chem 275:25717–25722
CAS
PubMed
Google Scholar
Gardell LR, Reid LD, Boedeker KL, Liakos TM, Hubbell CL (1997) Isradipine and naltrexone in combination with isradipine interact with a period of abstinence to reduce rats’ intakes of an alcoholic beverage. Alcohol Clin Exp Res 21:1592–1598
CAS
PubMed
Google Scholar
Rezvani AH, Janowsky DS (1990) Decreased alcohol consumption by verapamil in alcohol preferring rats. Prog Neuropsychopharmacol Biol Psychiatry 14:623–631
CAS
PubMed
Google Scholar
De Beun R, Schneider R, Klein A, Lohmann A, De Vry J (1996) Effects of nimodipine and other calcium channel antagonists in alcohol-preferring AA rats. Alcohol 13:263–271
PubMed
Google Scholar
Hatta S, Saito T, Ohshika H (1994) Effects of ethanol on the function of G proteins in rat cerebral cortex membranes. Alcohol Alcohol Suppl 29:45–51
CAS
PubMed
Google Scholar
Mochly-Rosen D, Chang FH, Cheever L, Kim M, Diamond I, Gordon AS (1988) Chronic ethanol causes heterologous desensitization of receptors by reducing αs messenger RNA. Nature 333:848–850
CAS
PubMed
Google Scholar
Tabakoff B, Whelan JP, Ovchinnikova L, Nhamburo P, Yoshimura M, Hoffman PL (1995) Quantitative changes in G proteins do not mediate ethanol-induced downregulation of adenylyl cyclase in mouse cerebral cortex. Alcohol Clin Exp Res 19:187–194
CAS
PubMed
Google Scholar
Yoshimura M, Tabakoff B (1995) Selective effects of ethanol on the generation of cAMP by particular members of the adenylyl cyclase family. Alcohol Clin Exp Res 19:1435–1440
CAS
PubMed
Google Scholar
Yoshimura M, Pearson S, Kadota Y, Gonzalez CE (2006) Identification of ethanol responsive domains of adenylyl cyclase. Alcohol Clin Exp Res 30:1824–1832
CAS
PubMed
Google Scholar
Constantinescu A, Diamond I, Gordon AS (1999) Ethanol-induced translocation of cAMP-dependent protein kinase to the nucleus. Mechanism and functional consequences. J Biol Chem 274:26985–26991
CAS
PubMed
Google Scholar
Ron D, Jurd R (2005) The “ups and downs” of signaling cascades in addiction. Sci STKE 2005, re14
Lee AM, Messing RO (2008) Protein kinases and addiction. Ann N Y Acad Sci 1141:22–57
CAS
PubMed
Google Scholar
Wayman GA, Lee YS, Tokumitsu H, Silva A, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931
CAS
PubMed
Google Scholar
Li J, Bian WL, Xie GQ, Cui SZ, Wu ML, Li YH, Que LL, Yuan XR (2008) Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase IV expression in nucleus accumbens of rats: naloxone reversal. Acta Pharmacol Sin 29:646–652
CAS
PubMed
Google Scholar
Mahadev K, Chetty CS, Vemuri MC (2001) Effect of prenatal and postnatal ethanol exposure on Ca2+/calmodulin-dependent protein kinase II in rat cerebral cortex. Alcohol 23:183–188
CAS
PubMed
Google Scholar
Liu J, Asuncion-Chin M, Liu P, Dopico AM (2006) CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci 9:41–49
CAS
PubMed
Google Scholar
Xu M, Chandler LJ, Woodward JJ (2008) Ethanol inhibition of recombinant NMDA receptors is not altered by coexpression of CaMKII-α or CaMKII-β. Alcohol 42:425–432
CAS
PubMed
Google Scholar
Brandon EP, Idzerda RL, McKnight GS (1997) PKA isoforms, neural pathways, and behaviour: making the connection. Curr Opin Neurobiol 7:397–403
CAS
PubMed
Google Scholar
Dohrman DP, Diamond I, Gordon AS (1996) Ethanol causes translocation of cAMP-dependent protein kinase catalytic subunit to the nucleus. Proc Natl Acad Sci USA 93:10217–10221
CAS
PubMed
Google Scholar
Misra K, Pandey SC (2006) The decreased cyclic-AMP dependent-protein kinase A function in the nucleus accumbens: a role in alcohol drinking but not in anxiety-like behaviors in rats. Neuropsychopharmacology 31:1406–1419
CAS
PubMed
Google Scholar
Yao L, Arolfo MP, Dohrman DP, Jiang Z, Fan P, Fuchs S, Janak PH, Gordon AS, Diamond I (2002) βγ Dimers mediate synergy of dopamine D2 and adenosine A2 receptor-stimulated PKA signaling and regulate ethanol consumption. Cell 109:733–743
CAS
PubMed
Google Scholar
Zhang H, Pandey SC (2003) Effects of PKA modulation on the expression of neuropeptide Y in rat amygdaloid structures during ethanol withdrawal. Peptides 24:1397–1402
CAS
PubMed
Google Scholar
Lai CC, Kuo TI, Lin HH (2007) The role of protein kinase A in acute ethanol-induced neurobehavioral actions in rats. Anesth Analg 105:89–96
CAS
PubMed
Google Scholar
Thiele TE, Willis B, Stadler J, Reynolds JG, Bernstein IL, McKnight GS (2000) High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice. J Neurosci 20:RC75
CAS
PubMed
Google Scholar
Repunte-Canonigo V, Lutjens R, van der Stap LD, Sanna PP (2007) Increased expression of protein kinase A inhibitor α (PKI-α) and decreased PKA-regulated genes in chronic intermittent alcohol exposure. Brain Res 1138:48–56
CAS
PubMed
Google Scholar
Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1:602–609
CAS
PubMed
Google Scholar
Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183
CAS
PubMed
Google Scholar
Sanna PP, Simpson C, Lutjens R, Koob G (2002) ERK regulation in chronic ethanol exposure and withdrawal. Brain Res 948:186–191
CAS
PubMed
Google Scholar
Kalluri HS, Ticku MK (2003) Regulation of ERK phosphorylation by ethanol in fetal cortical neurons. Neurochem Res 28:765–769
CAS
PubMed
Google Scholar
Carnicella S, Kharazia V, Jeanblanc J, Janak PH, Ron D (2008) GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci USA 105:8114–8119
CAS
PubMed
Google Scholar
Pandey SC, Zhang H, Roy A, Misra K (2006) Central and medial amygdaloid brain-derived neurotrophic factor signaling plays a critical role in alcohol-drinking and anxiety-like behaviors. J Neurosci 26:8320–8331
CAS
PubMed
Google Scholar
Xie GQ, Wang SJ, Li J, Cui SZ, Zhou R, Chen L, Yuan XR (2009) Ethanol attenuates the HFS-induced, ERK-mediated LTP in a dose-dependent manner in rat striatum. Alcohol Clin Exp Res 33:121–128
CAS
PubMed
Google Scholar
Roberto M, Nelson TE, Ur CL, Brunelli M, Sanna PP, Gruol DL (2003) The transient depression of hippocampal CA1 LTP induced by chronic intermittent ethanol exposure is associated with an inhibition of the MAP kinase pathway. Eur J Neurosci 17:1646–1654
CAS
PubMed
Google Scholar
Kuczewski N, Porcher C, Lessmann V, Medina I, Gaiarsa JL (2009) Activity-dependent dendritic release of BDNF and biological consequences. Mol Neurobiol 39:37–49
CAS
PubMed
Google Scholar
Horch HW (2004) Local effects of BDNF on dendritic growth. Rev Neurosci 15:117–129
CAS
PubMed
Google Scholar
Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM, Yancopoulos GD (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5:501–509
CAS
PubMed
Google Scholar
Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22:7453–7461
CAS
PubMed
Google Scholar
Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32
CAS
PubMed
Google Scholar
Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B 361:1545–1564
CAS
Google Scholar
Pizzorusso T, Ratto GM, Putignano E, Maffei L (2000) Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increases in slices and cultured neurons from rat visual cortex. J Neurosci 20:2809–2816
CAS
PubMed
Google Scholar
Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726
CAS
PubMed
Google Scholar
Deogracias R, Espliguero G, Iglesias T, Rodriguez-Pena A (2004) Expression of the neurotrophin receptor TrkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 26:470–480
CAS
PubMed
Google Scholar
Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101
CAS
PubMed
Google Scholar
Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540
CAS
PubMed
Google Scholar
Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene Arc/Arg3.1: regulation, mechanisms, and function. J Neurosci 28:11760–11767
CAS
PubMed
Google Scholar
Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, Bramham CR (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27:10445–10455
CAS
PubMed
Google Scholar
Huang F, Chotiner JK, Steward O (2007) Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J Neurosci 27:9054–9067
CAS
PubMed
Google Scholar
Soule J, Messaoudi E, Bramham CR (2006) Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans 34:600–604
CAS
PubMed
Google Scholar
Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M (2001) Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31:289–303
CAS
PubMed
Google Scholar
Vickers CA, Stephens B, Bowen J, Arbuthnott GW, Grant SG, Ingham CA (2006) Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95). Brain Res 1090:89–98
CAS
PubMed
Google Scholar
Starkman BG, Pandey SC (2007) Brain-derived neurotrophic factor and mental illness: an epigenetic approach. Proc Natl Acad Sci India 77(B):105–113
Google Scholar
Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10:345–352
CAS
PubMed
Google Scholar
Jeanblanc J, He DY, McGough NN, Logrip ML, Phamluong K, Janak PH, Ron D (2006) The dopamine D3 receptor is part of a homeostatic pathway regulating ethanol consumption. J Neurosci 26:1457–1464
CAS
PubMed
Google Scholar
Hensler JG, Ladenheim EE, Lyons WE (2003) Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (+/−) mice. J Neurochem 85:1139–1147
CAS
PubMed
Google Scholar
MacLennan AJ, Lee N, Walker DW (1995) Chronic ethanol administration decreases brain-derived neurotrophic factor gene expression in the rat hippocampus. Neurosci Lett 197:105–108
CAS
PubMed
Google Scholar
Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci 25:2255–2266
CAS
PubMed
Google Scholar
Sakai R, Ukai W, Sohma H, Hashimoto E, Yamamoto M, Ikeda H, Saito T (2005) Attenuation of brain derived neurotrophic factor (BDNF) by ethanol and cytoprotective effect of exogenous BDNF against ethanol damage in neuronal cells. J Neural Transm 112:1005–1013
CAS
PubMed
Google Scholar
McGough NN, He DY, Logrip ML, Jeanblanc J, Phamluong K, Luong K, Kharazia V, Janak PH, Ron D (2004) RACK1 and brain-derived neurotrophic factor: a homeostatic pathway that regulates alcohol addiction. J Neurosci 24:10542–10552
CAS
PubMed
Google Scholar
Prakash A, Zhang H, Pandey SC (2008) Innate differences in the expression of brain-derived neurotrophic factor in the regions within the extended amygdala between alcohol preferring and nonpreferring rats. Alcohol Clin Exp Res 32:909–920
CAS
PubMed
Google Scholar
Yan QS, Feng MJ, Yan SE (2005) Different expression of brain-derived neurotrophic factor in the nucleus accumbens of alcohol-preferring (P) and -nonpreferring (NP) rats. Brain Res 1035:215–218
CAS
PubMed
Google Scholar
Lescaudron L, Jaffard R, Verna A (1989) Modifications in number and morphology of dendritic spines resulting from chronic ethanol consumption and withdrawal: a Golgi study in the mouse anterior and posterior hippocampus. Exp Neurol 106:156–163
CAS
PubMed
Google Scholar
Lee K, Dunwiddie T, Deitrich R, Lynch G, Hoffer B (1981) Chronic ethanol consumption and hippocampal neuron dendritic spines: a morphometric and physiological analysis. Exp Neurol 71:541–549
CAS
PubMed
Google Scholar
Riley JN, Walker DW (1978) Morphological alterations in hippocampus after long-term alcohol consumption in mice. Science 201:646–648
CAS
PubMed
Google Scholar
Chandler LJ (2003) Ethanol and brain plasticity: receptors and molecular networks of the postsynaptic density as targets of ethanol. Pharmacol Ther 99:311–326
CAS
PubMed
Google Scholar
Zhou FC, Anthony B, Dunn KW, Lindquist WB, Xu ZC, Deng P (2007) Chronic alcohol drinking alters neuronal dendritic spines in the brain reward center nucleus accumbens. Brain Res 1134:148–161
CAS
PubMed
Google Scholar
Moonat S, Sakharkar A, Zhang H, Pandey SC (2009) Effects of acute ethanol exposure on amygdaloid dendritic morphology and anxiety-like behaviors in P and NP rats. J Neurochem 108(Suppl 1):96–97
Google Scholar
Carpenter-Hyland EP, Chandler LJ (2006) Homeostatic plasticity during alcohol exposure promotes enlargement of dendritic spines. Eur J Neurosci 24:3496–3506
PubMed
Google Scholar
Halford JC, Cooper GD, Dovey TM (2004) The pharmacology of human appetite expression. Curr Drug Targets 5:221–240
CAS
PubMed
Google Scholar
Hansel DE, Eipper BA, Ronnett GV (2001) Regulation of olfactory neurogenesis by amidated neuropeptides. J Neurosci Res 66:1–7
CAS
PubMed
Google Scholar
Sajdyk TJ, Shekhar A, Gehlert DR (2004) Interactions between NPY and CRF in the amygdala to regulate emotionality. Neuropeptides 38:225–234
CAS
PubMed
Google Scholar
Fetissov SO, Kopp J, Hokfelt T (2004) Distribution of NPY receptors in the hypothalamus. Neuropeptides 38:175–188
CAS
PubMed
Google Scholar
Sheriff S, Qureshy AF, Chance WT, Kasckow JW, Balasubramaniam A (2002) Predominant role by CaM kinase in NPY Y1 receptor signaling: involvement of CREB. Peptides 23:87–96
CAS
PubMed
Google Scholar
Chance WT, Sheriff S, Peng F, Balasubramaniam A (2000) Antagonism of NPY-induced feeding by pretreatment with cyclic AMP response element binding protein antisense oligonucleotide. Neuropeptides 34:167–172
CAS
PubMed
Google Scholar
Higuchi H, Yang HY, Sabol SL (1988) Rat neuropeptide Y precursor gene expression. mRNA structure, tissue distribution, and regulation by glucocorticoids, cyclic AMP, and phorbol ester. J Biol Chem 263:6288–6295
CAS
PubMed
Google Scholar
Sheriff S, Dayal R, Kasckow J, Regmi A, Chance W, Fischer J, Balasubramaniam A (1998) NPY upregulates genes containing cyclic AMP response element in human neuroblastoma cell lines bearing Y1 and Y2 receptors: involvement of CREB. Regul Pept 75–76:309–318
PubMed
Google Scholar
Hwang BH, Zhang JK, Ehlers CL, Lumeng L, Li TK (1999) Innate differences of neuropeptide Y (NPY) in hypothalamic nuclei and central nucleus of the amygdala between selectively bred rats with high and low alcohol preference. Alcohol Clin Exp Res 23:1023–1030
CAS
PubMed
Google Scholar
Roy A, Pandey SC (2002) The decreased cellular expression of neuropeptide Y protein in rat brain structures during ethanol withdrawal after chronic ethanol exposure. Alcohol Clin Exp Res 26:796–803
CAS
PubMed
Google Scholar
Thiele TE, Marsh DJ, Ste Marie L, Bernstein IL, Palmiter RD (1998) Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 396:366–369
CAS
PubMed
Google Scholar
Palmiter RD, Erickson JC, Hollopeter G, Baraban SC, Schwartz MW (1998) Life without neuropeptide Y. Recent Prog Horm Res 53:163–199
CAS
PubMed
Google Scholar
Heilig M, Soderpalm B, Engel JA, Widerlov E (1989) Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology (Berl) 98:524–529
CAS
Google Scholar
Heilig M (1995) Antisense inhibition of neuropeptide Y (NPY)-Y1 receptor expression blocks the anxiolytic-like action of NPY in amygdala and paradoxically increases feeding. Regul Pept 59:201–205
CAS
PubMed
Google Scholar
Thiele TE, Koh MT, Pedrazzini T (2002) Voluntary alcohol consumption is controlled via the neuropeptide Y Y1 receptor. J Neurosci 22(RC208):1–6
Google Scholar
Rimondini R, Thorsell A, Heilig M (2005) Suppression of ethanol self-administration by the neuropeptide Y (NPY) Y2 receptor antagonist BIIE0246: evidence for sensitization in rats with a history of dependence. Neurosci Lett 375:129–133
CAS
PubMed
Google Scholar
Thiele TE, Naveilhan P, Ernfors P (2004) Assessment of ethanol consumption and water drinking by NPY Y2 receptor knockout mice. Peptides 25:975–983
CAS
PubMed
Google Scholar
Schroeder JP, Iller KA, Hodge CW (2003) Neuropeptide-Y Y5 receptors modulate the onset and maintenance of operant ethanol self-administration. Alcohol Clin Exp Res 27:1912–1920
CAS
PubMed
Google Scholar
Katner SN, Slawecki CJ, Ehlers CL (2002) Neuropeptide Y administration into the amygdala does not affect ethanol consumption. Alcohol 28:29–38
CAS
PubMed
Google Scholar
Badia-Elder NE, Stewart RB, Powrozek TA, Roy KF, Murphy JM, Li TK (2001) Effect of neuropeptide Y (NPY) on oral ethanol intake in Wistar, alcohol-preferring (P), and -nonpreferring (NP) rats. Alcohol Clin Exp Res 25:386–390
CAS
PubMed
Google Scholar
Primeaux SD, Wilson SP, Bray GA, York DA, Wilson MA (2006) Overexpression of neuropeptide Y in the central nucleus of the amygdala decreases ethanol self-administration in “anxious” rats. Alcohol Clin Exp Res 30:791–801
CAS
PubMed
Google Scholar
Thorsell A, Repunte-Canonigo V, O’Dell LE, Chen SA, King AR, Lekic D, Koob GF, Sanna PP (2007) Viral vector-induced amygdala NPY overexpression reverses increased alcohol intake caused by repeated deprivations in Wistar rats. Brain 130:1330–1337
PubMed
Google Scholar
Gilpin NW, Stewart RB, Badia-Elder NE (2008) Neuropeptide Y administration into the amygdala suppresses ethanol drinking in alcohol-preferring (P) rats following multiple deprivations. Pharmacol Biochem Behav 90:470–474
CAS
PubMed
Google Scholar
Gilpin NW, Misra K, Koob GF (2008) Neuropeptide Y in the central nucleus of the amygdala suppresses dependence-induced increases in alcohol drinking. Pharmacol Biochem Behav 90:475–480
CAS
PubMed
Google Scholar
Perrin MH, Vale WW (1999) Corticotropin releasing factor receptors and their ligand family. Ann N Y Acad Sci 885:312–328
CAS
PubMed
Article
Google Scholar
Gray TS (1993) Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Ann N Y Acad Sci 697:53–60
CAS
PubMed
Google Scholar
Koob GF, Heinrichs SC (1999) A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 848:141–152
CAS
PubMed
Google Scholar
Yao M, Stenzel-Poore M, Denver RJ (2007) Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 148:2518–2531
CAS
PubMed
Google Scholar
Rassnick S, Heinrichs SC, Britton KT, Koob GF (1993) Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res 605:25–32
CAS
PubMed
Google Scholar
Funk CK, O’Dell LE, Crawford EF, Koob GF (2006) Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J Neurosci 26:11324–11332
CAS
PubMed
Google Scholar
Finn DA, Snelling C, Fretwell AM, Tanchuck MA, Underwood L, Cole M, Crabbe JC, Roberts AJ (2007) Increased drinking during withdrawal from intermittent ethanol exposure is blocked by the CRF receptor antagonist D-Phe-CRF(12-41). Alcohol Clin Exp Res 31:939–949
CAS
PubMed
Google Scholar
Funk CK, Koob GF (2007) A CRF2 agonist administered into the central nucleus of the amygdala decreases ethanol self-administration in ethanol-dependent rats. Brain Res 1155:172–178
CAS
PubMed
Google Scholar
Merlo Pich E, Lorang M, Yeganeh M, Rodriguez de Fonseca F, Raber J, Koob GF, Weiss F (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 15:5439–5447
CAS
PubMed
Google Scholar
Richter RM, Zorrilla EP, Basso AM, Koob GF, Weiss F (2000) Altered amygdalar CRF release and increased anxiety-like behavior in Sardinian alcohol-preferring rats: a microdialysis and behavioral study. Alcohol Clin Exp Res 24:1765–1772
CAS
PubMed
Google Scholar
Hwang BH, Stewart R, Zhang JK, Lumeng L, Li TK (2004) Corticotropin-releasing factor gene expression is down-regulated in the central nucleus of the amygdala of alcohol-preferring rats which exhibit high anxiety: a comparison between rat lines selectively bred for high and low alcohol preference. Brain Res 1026:143–150
CAS
PubMed
Google Scholar
Ehlers CL, Chaplin RI, Wall TL, Lumeng L, Li TK, Owens MJ, Nemeroff CB (1992) Corticotropin releasing factor (CRF): studies in alcohol preferring and non-preferring rats. Psychopharmacology (Berl) 106:359–364
CAS
Google Scholar
Nie Z, Schweitzer P, Roberts AJ, Madamba SG, Moore SD, Siggins GR (2004) Ethanol augments GABAergic transmission in the central amygdala via CRF1 receptors. Science 303:1512–1514
CAS
PubMed
Google Scholar
Bajo M, Cruz MT, Siggins GR, Messing R, Roberto M (2008) Protein kinase C epsilon mediation of CRF- and ethanol-induced GABA release in central amygdala. Proc Natl Acad Sci USA 105:8410–8415
CAS
PubMed
Google Scholar
Valdez GR, Koob GF (2004) Allostasis and dysregulation of corticotropin-releasing factor and neuropeptide Y systems: implications for the development of alcoholism. Pharmacol Biochem Behav 79:671–689
CAS
PubMed
Google Scholar
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080
CAS
PubMed
Google Scholar
Smith MM (1991) Histone structure and function. Curr Opin Cell Biol 3:429–437
CAS
PubMed
Google Scholar
Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367
CAS
PubMed
Google Scholar
Saetrom P, Snove O Jr, Rossi JJ (2007) Epigenetics and microRNAs. Pediatr Res 61:17R–23R
CAS
PubMed
Google Scholar
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45
CAS
PubMed
Google Scholar
Chandramohan Y, Droste SK, Arthur JS, Reul JM (2008) The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-d-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway. Eur J Neurosci 27:2701–2713
PubMed
Google Scholar
Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14:341–350
CAS
PubMed
Google Scholar
Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552
CAS
PubMed
Google Scholar
Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304
CAS
PubMed
Google Scholar
Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64
CAS
PubMed
Google Scholar
Nestler EJ (2009) Epigenetic mechanisms in psychiatry. Biol Psychiatry 65:189–190
PubMed
Google Scholar
Kalsi G, Prescott CA, Kendler KS, Riley BP (2009) Unraveling the molecular mechanisms of alcohol dependence. Trends Genet 25:49–55
CAS
PubMed
Google Scholar
Ishii T, Hashimoto E, Ukai W, Tateno M, Yoshinaga T, Ono T, Watanabe K, Saito S, Saito T (2008) Epigenetic regulation in alcohol-related brain damage. Nihon Arukoru Yakubutsu Igakkai Zasshi 43:705–713
CAS
PubMed
Google Scholar
Kim JS, Shukla SD (2006) Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol 41:126–132
CAS
PubMed
Google Scholar
Pascual M, Boix J, Felipo V, Guerri C (2009) Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J Neurochem 108:920–931
CAS
PubMed
Google Scholar
Wysocka J, Allis CD, Coonrod S (2006) Histone arginine methylation and its dynamic regulation. Front Biosci 11:344–355
CAS
PubMed
Google Scholar
Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18:159–168
CAS
PubMed
Google Scholar
Cheung P, Lau P (2005) Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 19:563–573
CAS
PubMed
Google Scholar
Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176
CAS
PubMed
Google Scholar
Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705
CAS
PubMed
Google Scholar
Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257
CAS
PubMed
Google Scholar
Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402
CAS
PubMed
Google Scholar
Comb M, Goodman HM (1990) CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res 18:3975–3982
CAS
PubMed
Google Scholar
Kalluri HS, Mehta AK, Ticku MK (1998) Up-regulation of NMDA receptor subunits in rat brain following chronic ethanol treatment. Brain Res Mol Brain Res 58:221–224
CAS
PubMed
Google Scholar
Marutha Ravindran CR, Ticku MK (2005) Role of CpG islands in the up-regulation of NMDA receptor NR2B gene expression following chronic ethanol treatment of cultured cortical neurons of mice. Neurochem Int 46:313–327
CAS
PubMed
Google Scholar
Bonsch D, Lenz B, Kornhuber J, Bleich S (2005) DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport 16:167–170
PubMed
Google Scholar
Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287
CAS
PubMed
Google Scholar
Cowmeadow RB, Krishnan HR, Atkinson NS (2005) The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res 29:1777–1786
CAS
PubMed
Google Scholar
Sathyan P, Golden HB, Miranda RC (2007) Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27:8546–8557
CAS
PubMed
Google Scholar