Skip to main content

Advertisement

Log in

Premature aging

  • Visions & Reflections (Minireview)
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Weinert BT, Timiras PS (2003) Theories of aging. J Appl Physiol 95:1706–1716

    PubMed  CAS  Google Scholar 

  2. Merry BJ (2002) Molecular mechanisms linking calorie restriction and longevity. Int J Biochem Cell Biol 34:1340–1354

    Article  PubMed  CAS  Google Scholar 

  3. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  PubMed  CAS  Google Scholar 

  4. Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH (2008) DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 10:1241–1247

    Article  PubMed  CAS  Google Scholar 

  5. Wright WE, Shay JW (2002) Historical claims and current interpretations of replicative aging. Nat Biotechnol 20:682–688

    Article  PubMed  CAS  Google Scholar 

  6. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  CAS  Google Scholar 

  7. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  PubMed  CAS  Google Scholar 

  8. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  PubMed  CAS  Google Scholar 

  9. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  10. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    Article  PubMed  CAS  Google Scholar 

  11. Von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann NY Acad Sci 908:99–110

    Article  Google Scholar 

  12. Nakamura AJ, Chiang YJ, Hathcock KS, Horikawa I, Sedelnikova OA, Hodes RJ, Bonner WM (2008) Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenet Chromatin 1:6

    Article  CAS  Google Scholar 

  13. Hug N, Lingner J (2006) Telomere length homeostasis. Chromosoma 115:413–425

    Article  PubMed  CAS  Google Scholar 

  14. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  PubMed  CAS  Google Scholar 

  15. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  16. Tomás-Loba A, Flores I, Fernández-Marcos PJ, Cayuela ML, Maraver A, Tejera A, Borrás C, Matheu A, Klatt P, Flores JM, Viña J, Serrano M, Blasco MA (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135:609–622

    Article  PubMed  CAS  Google Scholar 

  17. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived dell lines. Nat Med 3:1271–1274

    Article  PubMed  CAS  Google Scholar 

  18. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  PubMed  CAS  Google Scholar 

  19. Dokal I (2000) Dyskeratosis congeinta in all its forms. Br J Haematol 110:768–779

    Article  PubMed  CAS  Google Scholar 

  20. Calado RT, Young NS (2008) Telomere maintenance and human bone marrow failure. Blood 111:4446–4455

    Article  PubMed  CAS  Google Scholar 

  21. Armanios M (2009) Syndromes of telomere shortening. Annu Rev Genom Hum Genet 10:2.1–2.17

    Google Scholar 

  22. Meier UT (2005) The many facets of H/ACA ribonucleoproteins. Chromosoma 114:1–14

    Article  PubMed  CAS  Google Scholar 

  23. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  PubMed  CAS  Google Scholar 

  24. Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555

    Article  PubMed  CAS  Google Scholar 

  25. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432–435

    Article  PubMed  CAS  Google Scholar 

  26. Armanios M, Chen JL, Chang YP, Brodsky RA, Hawkins A, Griffin CA, Eshleman JR, Cohen AR, Chakravarti A, Hamosh A, Greider CW (2005) Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci USA 102:15960–15964

    Article  PubMed  CAS  Google Scholar 

  27. Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP (2008) TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 82:501–509

    Article  PubMed  CAS  Google Scholar 

  28. Kudlow BA, Kennedy BK, Monnat RJ Jr (2007) Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8:394–404

    Article  PubMed  CAS  Google Scholar 

  29. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  PubMed  CAS  Google Scholar 

  30. Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–1953

    Article  PubMed  CAS  Google Scholar 

  31. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kølvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14:763–774

    Article  PubMed  CAS  Google Scholar 

  32. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882

    Article  PubMed  CAS  Google Scholar 

  33. Hennekam RC (2006) Hutchinson–Gilford progeria syndrome: review of the phenotype. Am J Med Genet 140:2603–2624

    Article  PubMed  CAS  Google Scholar 

  34. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423:293–298

    Article  PubMed  CAS  Google Scholar 

  35. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Lévy N (2003) Lamin A truncation in Hutchinson–Gilford progeria. Science 300:2055

    Article  PubMed  Google Scholar 

  36. Decker ML, Chavez E, Vulto I, Lansdorp PM (2009) Telomere length in Hutchinson–Gilford progeria syndrome. Mech Ageing Dev 130:377–383

    Article  PubMed  CAS  Google Scholar 

  37. Zhu XD, Kuster B, Mann M, de Petrini JHJ, Lange T (2000) Cell-cycle regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25:347–352

    Article  PubMed  CAS  Google Scholar 

  38. Ranganathan V, Heine WF, Ciccone DN, Rudolph KL, Wu X, Chang S, Hai H, Ahearn IM, Livingston DM, Resnick I, Rosen F, Seemanova E, Jarolim P, DePinho RA, Weaver DT (2001) Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr Biol 11:962–966

    Article  PubMed  CAS  Google Scholar 

  39. Pandita TK, Pathak S, Geard C (1995) Chromosome end associations, telomeres and telomerase activity in ataxia telangiectasia. Cancer Genet Cytogenet 71:86–93

    Article  CAS  Google Scholar 

  40. Hofer AC, Tran RT, Aziz OZ, Wright W, Novelli G, Shay J, Lewis M (2005) Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J Gerontol A Biol Sci Med Sci 60:10–20

    PubMed  Google Scholar 

  41. Cox LS, Faragher RG (2007) From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 64:2620–2641

    Article  PubMed  CAS  Google Scholar 

  42. Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK (2000) Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Exp Cell Res 258:270–278

    Article  PubMed  CAS  Google Scholar 

  43. Minamino T, Yoshida T, Tateno K, Miyauchi H, Zou Y, Toko H, Komuro I (2003) Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation 108:2264–2269

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Vulliamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vulliamy, T.J. Premature aging. Cell. Mol. Life Sci. 66, 3091–3094 (2009). https://doi.org/10.1007/s00018-009-0091-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0091-6

Keywords

Navigation