Mammalian iron transport

  • Gregory Jon AndersonEmail author
  • Christopher D. Vulpe


Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.


Iron transport Transferrin DMT1 Ferroportin Hepcidin Heme transport Iron oxidoreductase 



G.J.A. is the recipient of a Senior Research Fellowship from the National Health and Medical Research Council of Australia.


  1. 1.
    Crosa JH, Mey AR, Payne SM (eds) (2004) Iron transport in bacteria. American Society for Microbiology, Washington, DCGoogle Scholar
  2. 2.
    Philpott CC, Protchenko O (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7:20–27PubMedCrossRefGoogle Scholar
  3. 3.
    Sutak R, Lesuisse E, Tachezy J, Richardson DR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16:261–268PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson MT, Reeder BJ (2008) Oxygen-binding haem proteins. Exp Physiol 93:128–132PubMedCrossRefGoogle Scholar
  5. 5.
    Rouault TA, Tong WH (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351PubMedCrossRefGoogle Scholar
  6. 6.
    Lill R, Mühlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486PubMedCrossRefGoogle Scholar
  7. 7.
    Crichton R (2001) Inorganic biochemistry of iron metabolism. From Molecular mechanisms to clinical consequences. 2nd edn. Wiley, New YorkGoogle Scholar
  8. 8.
    Castagnetto JM, Hennessy SW, Roberts VA, Getzoff ED, Tainer JA, Pique ME (2002) MDB: the Metalloprotein Database and Browser at The Scripps Research Institute. Nucl Acids Res 30:379–382.
  9. 9.
    Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203PubMedCrossRefGoogle Scholar
  10. 10.
    Koorts AM, Viljoen M (2007) Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion. Arch Physiol Biochem 113:30–54PubMedCrossRefGoogle Scholar
  11. 11.
    Iancu TC, Deugnier Y, Halliday JW, Powell LW, Brissot P (1997) Ultrastructural sequences during liver iron overload in genetic hemochromatosis. J Hepatol 27:628–638PubMedCrossRefGoogle Scholar
  12. 12.
    Trinder D, Morgan E (2001) Uptake of transferrin-bound iron by mammalian cells. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 427–449Google Scholar
  13. 13.
    Chua AC, Graham RM, Trinder D, Olynyk JK (2007) The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 44:413–459PubMedCrossRefGoogle Scholar
  14. 14.
    Parkes JG, Templeton DM (2001) Transport of non-transferrin-bound iron by hepatocytes. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 451–466Google Scholar
  15. 15.
    Hider RC (2002) Nature of nontransferrin-bound iron. Eur J Clin Invest 32(Suppl 1):50–54PubMedCrossRefGoogle Scholar
  16. 16.
    Enns CA (2001) The transferrin receptor. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 71–94Google Scholar
  17. 17.
    Aisen P (2004) Transferrin receptor 1. Int J Biochem Cell Biol 36:2137–2143PubMedCrossRefGoogle Scholar
  18. 18.
    Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC (1999) Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 21:396–399PubMedCrossRefGoogle Scholar
  19. 19.
    Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC (1999) Crystal structure of the ectodomain of human transferrin receptor. Science 286:779–782PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Structure of the human transferrin receptor-transferrin complex. Cell 116:565–576PubMedCrossRefGoogle Scholar
  21. 21.
    Tsunoo H, Sussman HH (1983) Characterization of transferrin binding and specificity of the placental transferrin receptor. Arch Biochem Biophys 225:42–54PubMedCrossRefGoogle Scholar
  22. 22.
    Klausner RD, Ashwell G, van Renswoude J, Harford JB, Bridges KR (1983) Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci USA 80:2263–2266PubMedCrossRefGoogle Scholar
  23. 23.
    Watkins JA, Altazan JD, Elder P, Li C-Y, Nunez M-T, Cui X-X, Glass J (1992) Kinetic characterization of reductant dependent processes in iron mobilization from endocytic vesicles. Biochemistry 31:5820–5830PubMedCrossRefGoogle Scholar
  24. 24.
    Bali PK, Zak O, Aisen P (1991) A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry 30:324–328PubMedCrossRefGoogle Scholar
  25. 25.
    Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269PubMedCrossRefGoogle Scholar
  26. 26.
    Ohgami RS, Campagna DR, Antiochos B, Wood EB, Sharp JJ, Barker JE, Fleming MD (2005) nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse. Blood 106:3625–3631PubMedCrossRefGoogle Scholar
  27. 27.
    Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394PubMedCrossRefGoogle Scholar
  28. 28.
    Knutson MD (2007) Steap proteins: implications for iron and copper metabolism. Nutr Rev 65:335–340PubMedGoogle Scholar
  29. 29.
    Sendamarai AK, Ohgami RS, Fleming MD, Lawrence CM (2008) Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle. Proc Natl Acad Sci USA 105:7410–7415PubMedCrossRefGoogle Scholar
  30. 30.
    Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC (1998) NRAMP2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA 95:1148–1153PubMedCrossRefGoogle Scholar
  31. 31.
    Katz JH (1961) Iron and protein kinetics studied by means of doubly labeled human crystalline transferrin. J Clin Invest 40:2143–2152PubMedCrossRefGoogle Scholar
  32. 32.
    Lim JE, Jin O, Bennett C, Morgan K, Wang F, Trenor CC 3rd, Fleming MD, Andrews NC (2005) A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet 37:1270–1273PubMedCrossRefGoogle Scholar
  33. 33.
    White RA, Boydston LA, Brookshier TR, McNulty SG, Nsumu NN, Brewer BP, Blackmore K (2005) Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking. Genomics 86:668–673PubMedCrossRefGoogle Scholar
  34. 34.
    Garrick LM, Edwards JA, Hoke JE, Bannerman RM (1987) Diminished acquisition of iron by reticulocytes from mice with hemoglobin deficit. Exp Hematol 15:671–675PubMedGoogle Scholar
  35. 35.
    Zhang AS, Sheftel AD, Ponka P (2006) The anemia of “haemoglobin-deficit” (hbd/hbd) mice is caused by a defect in transferrin cycling. Exp Hematol 34:593–598PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang XM, Ellis S, Sriratana A, Mitchell CA, Rowe T (2004) Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 279:43027–43034PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson GJ, Powell LW, Halliday JW (1994) The endocytosis of transferrin by rat intestinal epithelial cells. Gastroenterology 106:414–422PubMedGoogle Scholar
  38. 38.
    Trinder D, Zak O, Aisen P (1996) Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression. Hepatology 23:1512–1520PubMedCrossRefGoogle Scholar
  39. 39.
    Trinder D, Morgan EH, Baker E (1988) The effects of an antibody to the rat transferrin receptor and of rat serum albumin on the uptake of diferric transferrin by rat hepatocytes. Biochim Biophys Acta 943:440–446PubMedCrossRefGoogle Scholar
  40. 40.
    Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP (1999) Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family. J Biol Chem 274:20826–20832PubMedCrossRefGoogle Scholar
  41. 41.
    Lee AW, Oates PS, Trinder D (2003) Effects of cell proliferation on the uptake of transferrin-bound iron by human hepatoma cells. Hepatology 38:967–977PubMedGoogle Scholar
  42. 42.
    Robb AD, Ericsson M, Wessling-Resnick M (2004) Transferrin receptor 2 mediates a biphasic pattern of transferrin uptake associated with ligand delivery to multivesicular bodies. Am J Physiol 287:C1769–C1775CrossRefGoogle Scholar
  43. 43.
    Morgan EH, Smith GD, Peters TJ (1986) Uptake and subcellular processing of 59Fe-125I-labelled transferrin by rat liver. Biochem J 237:163–173PubMedGoogle Scholar
  44. 44.
    Trinder D, Morgan EH, Baker E (1986) The mechanisms of iron uptake by fetal rat hepatocytes in culture. Hepatology 6:852–858PubMedCrossRefGoogle Scholar
  45. 45.
    Fleming RE, Migas MC, Holden CC, Waheed A, Britton RS, Tomatsu S, Bacon BR, Sly WS (2000) Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci USA 97:2214–2219PubMedCrossRefGoogle Scholar
  46. 46.
    Deaglio S, Capobianco A, Cali A, Bellora F, Alberti F, Righi L, Sapino A, Camaschella C, Malavasi F (2002) Structural, functional, and tissue distribution analysis of human transferrin receptor-2 by murine monoclonal antibodies and polyclonal antiserum. Blood 100:3782–3789PubMedCrossRefGoogle Scholar
  47. 47.
    Camaschella C, Roetto A, Cali A, De Gobbi M, Garozzo G, Carella M, Majorano N, Totaro A, Gasparini P (2000) The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 25:14–15PubMedCrossRefGoogle Scholar
  48. 48.
    Fleming RE, Ahmann JR, Migas MC, Waheed A, Koeffler HP, Kawabata H, Britton RS, Bacon BR, Sly WS (2002) Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci USA 99:10653–10658PubMedCrossRefGoogle Scholar
  49. 49.
    Raje CI, Kumar S, Harle A, Nanda JS, Raje M (2007) The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 282:3252–3261PubMedCrossRefGoogle Scholar
  50. 50.
    Thorstensen K, Romslo I (1990) The role of transferrin in the mechanism of cellular iron uptake. Biochem J 271:1–10PubMedGoogle Scholar
  51. 51.
    Oshiro S, Nakajima H, Markello T, Krasnewich D, Bernardini I, Gahl WA (1993) Redox, transferrin-independent, and receptor-mediated endocytosis iron uptake systems in cultured human fibroblasts. J Biol Chem 268:21586–21591PubMedGoogle Scholar
  52. 52.
    Cole ES, Glass J (1983) Transferrin binding and iron uptake in mouse hepatocytes. Biochim Biophys Acta 762:102–110PubMedCrossRefGoogle Scholar
  53. 53.
    Thorstensen K, Romslo I (1988) Uptake of iron from transferrin by isolated rat hepatocytes. A redox-mediated plasma membrane process? J Biol Chem 263:8844–8850PubMedGoogle Scholar
  54. 54.
    Trinder D, Morgan E (1997) Inhibition of uptake of transferrin-bound iron by human hepatoma cells by nontransferrin-bound iron. Hepatology 26:691–698PubMedCrossRefGoogle Scholar
  55. 55.
    Graham RM, Morgan EH, Baker E (1998) Ferric citrate uptake by cultured rat hepatocytes is inhibited in the presence of transferrin. Eur J Biochem 253:139–145PubMedCrossRefGoogle Scholar
  56. 56.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488PubMedCrossRefGoogle Scholar
  57. 57.
    Courville P, Chaloupka R, Cellier MF (2006) Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol 84:960–978PubMedCrossRefGoogle Scholar
  58. 58.
    Fleming MD, Trenor CC 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16:383–386PubMedGoogle Scholar
  59. 59.
    Nevo Y (2008) Site-directed mutagenesis investigation of coupling properties of metal ion transport by DCT1. Biochim Biophys Acta 1778:334–341PubMedCrossRefGoogle Scholar
  60. 60.
    Li H, Gu JD, Sun H (2008) Structure, topology and assembly of a 32-mer peptide corresponding to the loop 3 and transmembrane domain 4 of divalent metal transporter (DMT1) in membrane-mimetic environments. J Inorg Biochem 102:1257–1266PubMedCrossRefGoogle Scholar
  61. 61.
    Bowen BJ, Morgan EH (1987) Anemia of the Belgrade rat: evidence for defective membrane transport of iron. Blood 70:38–44PubMedGoogle Scholar
  62. 62.
    Mackenzie B, Garrick MD (2005) Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol 289:G981–G986Google Scholar
  63. 63.
    Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC (2005) Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115:1258–1266PubMedGoogle Scholar
  64. 64.
    Picard V, Govoni G, Jabado N, Gros P (2000) Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool. J Biol Chem 275:35738–35745PubMedCrossRefGoogle Scholar
  65. 65.
    Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620PubMedCrossRefGoogle Scholar
  66. 66.
    Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485PubMedCrossRefGoogle Scholar
  67. 67.
    Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185:717–730PubMedCrossRefGoogle Scholar
  68. 68.
    Goswami T, Bhattacharjee A, Babal P, Searle S, Moore E, Li M, Blackwell JM (2001) Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J 354:511–519PubMedCrossRefGoogle Scholar
  69. 69.
    Wyllie S, Seu P, Goss JA (2002) The natural resistance-associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages. Microbes Infect 4:351–359PubMedCrossRefGoogle Scholar
  70. 70.
    Soe-Lin S, Sheftel AD, Wasyluk B, Ponka P (2008) Nramp1 equips macrophages for efficient iron recycling. Exp Hematol 36:929–937PubMedCrossRefGoogle Scholar
  71. 71.
    Bernstein SE (1987) Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia. J Lab Clin Med 110:690–705PubMedGoogle Scholar
  72. 72.
    Hayashi A, Wada Y, Suzuki T, Shimizu A (1993) Studies on familial hypotransferrinemia: unique clinical course and molecular pathology. Am J Hum Genet 53:201–213PubMedGoogle Scholar
  73. 73.
    Aisen P, Leibman A, Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253:1930–1937PubMedGoogle Scholar
  74. 74.
    Breuer W, Shvartsman M, Cabantchik ZI (2008) Intracellular labile iron. Int J Biochem Cell Biol 40:350–354PubMedCrossRefGoogle Scholar
  75. 75.
    Craven CM, Alexander J, Eldridge M, Kushner JP, Bernstein S, Kaplan J (1987) Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc Natl Acad Sci USA 84:3457–3461PubMedCrossRefGoogle Scholar
  76. 76.
    Wright TL, Brissot P, Ma W-L, Weisinger RA (1986) Characterization of non-transferrin-bound iron clearance by rat liver. J Biol Chem 261:10909–10914PubMedGoogle Scholar
  77. 77.
    Gutierrez JA, Yu J, Rivera S, Wessling-Resnick M (1997) Functional expression cloning and characterization of SFT, a stimulator of Fe transport. J Cell Biol 139:895–905 [Correction in (1999) J Cell Biol 147, following p 204]PubMedCrossRefGoogle Scholar
  78. 78.
    Barisani D, Conte D (2002) Transferrin receptor 1 (TfR1) and putative stimulator of Fe transport (SFT) expression in iron deficiency and overload: an overview. Blood Cells Mol Dis 29:498–505PubMedCrossRefGoogle Scholar
  79. 79.
    Gehrke SG, Riedel HD, Herrmann T, Hadaschik B, Bents K, Veltkamp C, Stremmel W (2003) UbcH5A, a member of human E2 ubiquitin-conjugating enzymes, is closely related to SFT, a stimulator of iron transport, and is up-regulated in hereditary hemochromatosis. Blood 101:3288–3293PubMedCrossRefGoogle Scholar
  80. 80.
    Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103:13612–13617PubMedCrossRefGoogle Scholar
  81. 81.
    Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9:1187–1194PubMedCrossRefGoogle Scholar
  82. 82.
    Randell EW, Parkes JG, Olivieri NF, Templeton DM (1994) Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem 269:16046–16053PubMedGoogle Scholar
  83. 83.
    Lim SK, Kim H, Lim SK, bin Ali A, Lim YK, Wang Y, Chong SM, Costantini F, Baumman H (1998) Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92:1870–1877PubMedGoogle Scholar
  84. 84.
    Tolosano E, Hirsch E, Patrucco E, Camaschella C, Navone R, Silengo L, Altruda F (1999) Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94:3906–3914PubMedGoogle Scholar
  85. 85.
    Wassell J (2000) Haptoglobin: function and polymorphism. Clin Lab 46:547–552PubMedGoogle Scholar
  86. 86.
    Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354PubMedCrossRefGoogle Scholar
  87. 87.
    Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201PubMedCrossRefGoogle Scholar
  88. 88.
    Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiol 210:153–160CrossRefGoogle Scholar
  89. 89.
    Tolosano E, Altruda F (2002) Hemopexin: structure, function, and regulation. DNA Cell Biol 21:297–306PubMedCrossRefGoogle Scholar
  90. 90.
    Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784PubMedGoogle Scholar
  91. 91.
    Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK (2005) Identification of the receptor scavenging hemopexin-heme complexes. Blood 106:2572–2579PubMedCrossRefGoogle Scholar
  92. 92.
    Smith A, Farooqui SM, Morgan WT (1991) The murine haemopexin receptor. Evidence that the haemopexin-binding site resides on a 20 kDa subunit and that receptor recycling is regulated by protein kinase C. Biochem J 276:417–425PubMedGoogle Scholar
  93. 93.
    Maines MD (2005) The heme oxygenase system: update 2005. Antiox Redox Signal 7:1761–1766CrossRefGoogle Scholar
  94. 94.
    Latunde-Dada GO, Simpson RJ, McKie AT (2006) Recent advances in mammalian haem transport. Trends Biochem Sci 31:182–188PubMedCrossRefGoogle Scholar
  95. 95.
    Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT (2005) Identification of an intestinal heme transporter. Cell 122:789–801PubMedCrossRefGoogle Scholar
  96. 96.
    Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928PubMedCrossRefGoogle Scholar
  97. 97.
    West AR, Oates PS (2008) Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 14:4101–4110PubMedCrossRefGoogle Scholar
  98. 98.
    Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, Kingsley PD, De Domenico I, Vaughn MB, Kaplan J, Palis J, Abkowitz JL (2008) A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319:825–828PubMedCrossRefGoogle Scholar
  99. 99.
    Sibille JC, Kondo H, Aisen P (1988) Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology 8:296–301PubMedCrossRefGoogle Scholar
  100. 100.
    Mack U, Cooksley WG, Ferris RA, Powell LW, Halliday JW (1981) Regulation of plasma ferritin by the isolated perfused rat liver. Br J Haematol 47:403–412PubMedCrossRefGoogle Scholar
  101. 101.
    Chen TT, Li L, Chung DH, Allen CD, Torti SV, Torti FM, Cyster JG, Chen CY, Brodsky FM, Niemi EC, Nakamura MC, Seaman WE, Daws MR (2005) TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 202:955–965PubMedCrossRefGoogle Scholar
  102. 102.
    Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, Drexler IR, Chen X, Sanna-Cherchi S, Mohammed F, Williams D, Lin CS, Schmidt-Ott KM, Andrews NC, Barasch J (2009) Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell 16:35–46PubMedCrossRefGoogle Scholar
  103. 103.
    Inman RS, Coughlan MM, Wessling-Resnick M (1994) Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport. Biochemistry 33:11850–11857PubMedCrossRefGoogle Scholar
  104. 104.
    Jordan I, Kaplan J (1994) The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Biochem J 302:875–879PubMedGoogle Scholar
  105. 105.
    Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301PubMedGoogle Scholar
  106. 106.
    Raja KB, Simpson RJ, Peters TJ (1992) Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim Biophys Acta 1135:141–146PubMedCrossRefGoogle Scholar
  107. 107.
    McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–1759PubMedCrossRefGoogle Scholar
  108. 108.
    Gunshin H, Starr CN, Direnzo C, Fleming MD, Jin J, Greer EL, Sellers VM, Galica SM, Andrews NC (2005) Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood 106:2879–2883PubMedCrossRefGoogle Scholar
  109. 109.
    Verrijt CE, Kroos MJ, Huijskes-Heins MI, van Eijk HG, van Dijk JP (1998) Non-transferrin iron uptake by trophoblast cells in culture. Significance of a NADH-dependent ferrireductase. Placenta 19:525–530PubMedCrossRefGoogle Scholar
  110. 110.
    Knutson M, Wessling-Resnick M (2003) Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol 38:61–88PubMedCrossRefGoogle Scholar
  111. 111.
    Anderson GJ, Vulpe CD (2001) Regulation of intestinal iron transport. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 559–596Google Scholar
  112. 112.
    Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912PubMedCrossRefGoogle Scholar
  113. 113.
    Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Postional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781PubMedCrossRefGoogle Scholar
  114. 114.
    McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309PubMedCrossRefGoogle Scholar
  115. 115.
    McArdle HJ, Andersen HS, Jones H, Gambling L (2008) Copper and iron transport across the placenta: regulation and interactions. J Neuroendocrinol 20:427–431PubMedCrossRefGoogle Scholar
  116. 116.
    Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1:191–200PubMedCrossRefGoogle Scholar
  117. 117.
    Pietrangelo A (2004) Non-HFE hemochromatosis. Hepatology 39:21–29PubMedCrossRefGoogle Scholar
  118. 118.
    Rice AE, Mendez MJ, Hokanson CA, Rees DC, Björkman PJ (2009) Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 386:717–732PubMedCrossRefGoogle Scholar
  119. 119.
    De Domenico I, Ward DM, Musci G, Kaplan J (2007) Evidence for the multimeric structure of ferroportin. Blood 109:2205–2209PubMedCrossRefGoogle Scholar
  120. 120.
    Wallace DF, Subramaniam VN (2007) Non-HFE haemochromatosis. World J Gastroenterol 13:4690–4698PubMedGoogle Scholar
  121. 121.
    Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL, Abkowitz JL (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118:757–766PubMedCrossRefGoogle Scholar
  122. 122.
    Krishnamurthy P, Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Ann Rev Pharm Toxicol 46:381–410PubMedCrossRefGoogle Scholar
  123. 123.
    Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458PubMedCrossRefGoogle Scholar
  124. 124.
    Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 96:10812–10817PubMedCrossRefGoogle Scholar
  125. 125.
    Xu X, Pin S, Gathinji M, Fuchs R, Harris ZL (2004) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann N Y Acad Sci 1012:299–305PubMedCrossRefGoogle Scholar
  126. 126.
    Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195–199PubMedCrossRefGoogle Scholar
  127. 127.
    Anderson GJ, Frazer DM, McKie AT, Vulpe CD (2002) The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis 29:367–375PubMedCrossRefGoogle Scholar
  128. 128.
    Hadziahmetovic M, Dentchev T, Song Y, Haddad N, He X, Hahn P, Pratico D, Wen R, Harris ZL, Lambris J, Beard J, Dunaief J (2008) Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD. Invest Ophthalmol Vis Sci 49:2728–2736PubMedCrossRefGoogle Scholar
  129. 129.
    Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148PubMedCrossRefGoogle Scholar
  130. 130.
    Cherukuri S, Potla R, Sarkar J, Nurko S, Harris ZL, Fox PL (2005) Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metab 2:309–319PubMedCrossRefGoogle Scholar
  131. 131.
    De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26:2823–2831PubMedCrossRefGoogle Scholar
  132. 132.
    Roeser HP, Lee GR, Nacht S, Cartwright GE (1970) The role of ceruloplasmin in iron metabolism. J Clin Invest 49:2408–2417PubMedCrossRefGoogle Scholar
  133. 133.
    Shiono Y, Wakusawa S, Hayashi H, Takikawa T, Yano M, Okada T, Mabuchi H, Kono S, Miyajima H (2001) Iron accumulation in the liver of male patients with Wilson’s disease. Am J Gastroenterol 96:3147–3151PubMedCrossRefGoogle Scholar
  134. 134.
    Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mut Res 531:81–92Google Scholar
  135. 135.
    Prohaska JR, Gybina AA (2004) Intracellular copper transport in mammals. J Nut 134:1003–1006Google Scholar
  136. 136.
    Shi H, Bencze KZ, Stemmler TL, Philpott CC (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207–1210PubMedCrossRefGoogle Scholar
  137. 137.
    Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals. Biochim Biophys Acta 1763:723–736PubMedCrossRefGoogle Scholar
  138. 138.
    Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874PubMedCrossRefGoogle Scholar
  139. 139.
    Sheftel AD, Zhang AS, Brown C, Shirihai OS, Ponka P (2007) Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110:125–132PubMedCrossRefGoogle Scholar
  140. 140.
    Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440:96–100PubMedCrossRefGoogle Scholar
  141. 141.
    Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (2009) Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 29:1007–1016PubMedCrossRefGoogle Scholar
  142. 142.
    Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Therapeut 114:345–358CrossRefGoogle Scholar
  143. 143.
    Pondarré C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, McDonald A, Han AP, Medlock A, Kutok JL, Anderson SA, Eisenstein RS, Fleming MD (2006) The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Gene 15:953–964CrossRefGoogle Scholar
  144. 144.
    Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J, Lill R, Bishop DF (2000) Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96:3256–3264PubMedGoogle Scholar
  145. 145.
    Puccio H, Simon D, Cossée M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186PubMedCrossRefGoogle Scholar
  146. 146.
    Pandolfo M (2003) Friedreich ataxia. Sem Pediatric Neurol 10:163–172CrossRefGoogle Scholar
  147. 147.
    Lodi R, Tonon C, Calabrese V, Schapira AH (2006) Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antiox Redox Signal 8:438–443CrossRefGoogle Scholar
  148. 148.
    Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13PubMedCrossRefGoogle Scholar
  149. 149.
    Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414PubMedCrossRefGoogle Scholar
  150. 150.
    Cairo G, Recalcati S (2007) Iron-regulatory proteins: molecular biology and pathophysiological implications. Exp Rev Mol Med 9:1–13CrossRefGoogle Scholar
  151. 151.
    Ponka P, Beaumont C, Richardson DR (1998) Function and regulation of transferrin and ferritin. Sem Hematol 35:35–54Google Scholar
  152. 152.
    Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA (2001) Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 509:309–316PubMedCrossRefGoogle Scholar
  153. 153.
    Tchernitchko D, Bourgeois M, Martin M-E, Beaumont C (2002) Expression of the two mRNA isoforms of the iron transporter Nramp2/DMT1 in mice and function of the iron responsive element. Biochem J 363:449–455PubMedCrossRefGoogle Scholar
  154. 154.
    Galy B, Ferring-Appel D, Kaden S, Gröne HJ, Hentze MW (2008) Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab 7:79–85PubMedCrossRefGoogle Scholar
  155. 155.
    Mok H, Jelinek J, Pai S, Cattanach BM, Prchal JT, Youssoufian H, Schumacher A (2004) Disruption of ferroportin 1 regulation causes dynamic alterations in iron homeostasis and erythropoiesis in polycythaemic mice. Development 131:1859–1868PubMedCrossRefGoogle Scholar
  156. 156.
    Melefors O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW (1993) Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem 268:5974–5978PubMedGoogle Scholar
  157. 157.
    Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23:386–395PubMedCrossRefGoogle Scholar
  158. 158.
    LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, Rouault TA (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27:209–214PubMedCrossRefGoogle Scholar
  159. 159.
    Galy B, Ferring D, Minana B, Bell O, Janser HG, Muckenthaler M, Schümann K, Hentze MW (2005) Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood 106:2580–2589PubMedCrossRefGoogle Scholar
  160. 160.
    Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306:2087–2090PubMedCrossRefGoogle Scholar
  161. 161.
    Frazer DM, Vulpe CD, McKie AT, Wilkins SJ, Trinder D, Cleghorn GJ, Anderson GJ (2001) Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. Am J Physiol 281:G931–G939Google Scholar
  162. 162.
    Mims MP, Prchal JT (2005) Divalent metal transporter 1. Hematology 10:339–345CrossRefGoogle Scholar
  163. 163.
    Hintze KJ, Theil EC (2006) Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci 63:591–600PubMedCrossRefGoogle Scholar
  164. 164.
    Casey JL, Di Jeso B, Rao K, Klausner RD, Harford JB (1988) Two genetic loci participate in the regulation by iron of the gene for the human transferrin receptor. Proc Natl Acad Sci USA 85:1787–1791PubMedCrossRefGoogle Scholar
  165. 165.
    Peyssonnaux C, Nizet V, Johnson RS (2008) Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle 7:28–32PubMedGoogle Scholar
  166. 166.
    Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G (1999) Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 274:24142–24146PubMedCrossRefGoogle Scholar
  167. 167.
    Lok CN, Ponka P (1999) Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 274:24147–24152PubMedCrossRefGoogle Scholar
  168. 168.
    Weiss G (2005) Modification of iron regulation by the inflammatory response. Best Pract Res Clin Haematol 18:183–201PubMedCrossRefGoogle Scholar
  169. 169.
    Trinder D, Oates PS, Thomas C, Sadlier J, Morgan EH (2000) Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46:270–276PubMedCrossRefGoogle Scholar
  170. 170.
    Scheiber-Mojdehkar B, Sturm B, Plank L, Kryzer I, Goldenberg H (2003) Influence of parenteral iron preparations on non-transferrin bound iron uptake, the iron regulatory protein and the expression of ferritin and the divalent metal transporter DMT-1 in HepG2 human hepatoma cells. Biochem Pharmacol 65:1973–1978PubMedCrossRefGoogle Scholar
  171. 171.
    Yeh KY, Yeh M, Watkins JA, Rodriguez-Paris J, Glass J (2000) Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am J Physiol 279:G1070–G1079Google Scholar
  172. 172.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093PubMedCrossRefGoogle Scholar
  173. 173.
    Johnson MB, Chen J, Murchison N, Green FA, Enns CA (2007) Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway. Mol Biol Cell 18:743–754PubMedCrossRefGoogle Scholar
  174. 174.
    Foot NJ, Dalton HE, Shearwin-Whyatt LM, Dorstyn L, Tan SS, Yang B, Kumar S (2008) Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112:4268–4275PubMedCrossRefGoogle Scholar
  175. 175.
    Lam-Yuk-Tseung S, Gros P (2006) Distinct targeting and recycling properties of two isoforms of the iron transporter DMT1 (NRAMP2, Slc11A2). Biochemistry 45:2294–2301PubMedCrossRefGoogle Scholar
  176. 176.
    De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, Kaplan J (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18:2569–2578PubMedCrossRefGoogle Scholar
  177. 177.
    De Domenico I, Lo E, Ward DM, Kaplan J (2009) Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci USA 106:3800–3805PubMedCrossRefGoogle Scholar
  178. 178.
    Wang F, Paradkar PN, Custodio AO, McVey Ward D, Fleming MD, Campagna D, Roberts KA, Boyartchuk V, Dietrich WF, Kaplan J, Andrews NC (2007) Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice. Nat Genet 39:1025–1032PubMedCrossRefGoogle Scholar
  179. 179.
    Zakin MM (1992) Regulation of transferrin gene expression. FASEB J 6:3253–3258PubMedGoogle Scholar
  180. 180.
    Sylvester SR, Griswold MD (1994) The testicular iron shuttle: a “nurse” function of the Sertoli cells. J Androl 15:381–385PubMedGoogle Scholar
  181. 181.
    MacGillivray RTA, Mason AB (2001) Transferrins. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 41–69Google Scholar
  182. 182.
    Cairo G (2001) Regulation of liver iron metabolism. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 613–641Google Scholar
  183. 183.
    Lok CN, Loh TT (1998) Regulation of transferrin function and expression: review and update. Biol Signals Recept 7:157–178PubMedCrossRefGoogle Scholar
  184. 184.
    Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 98:8780–8785PubMedCrossRefGoogle Scholar
  185. 185.
    Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S (2002) Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA 99:4596–4601PubMedCrossRefGoogle Scholar
  186. 186.
    Ganz T (2005) Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 18:171–182PubMedCrossRefGoogle Scholar
  187. 187.
    Rivera S, Liu L, Nemeth E, Gabayan V, Sorensen OE, Ganz T (2005) Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood 105:1797–1802PubMedCrossRefGoogle Scholar
  188. 188.
    Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819PubMedCrossRefGoogle Scholar
  189. 189.
    Millard KN, Frazer DM, Wilkins SJ, Anderson GJ (2004) Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat. Gut 53:655–660PubMedCrossRefGoogle Scholar
  190. 190.
    Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044PubMedGoogle Scholar
  191. 191.
    Wang RH, Li C, Xu X, Zheng Y, Xiao C, Zerfas P, Cooperman S, Eckhaus M, Rouault T, Mishra L, Deng CX (2005) A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2:399–409PubMedCrossRefGoogle Scholar
  192. 192.
    Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539PubMedCrossRefGoogle Scholar
  193. 193.
    Anderson GJ, Frazer DM (2006) Iron metabolism meets signal transduction. Nat Genet 38:503–504PubMedCrossRefGoogle Scholar
  194. 194.
    Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP (2009) Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet 41:478–481PubMedCrossRefGoogle Scholar
  195. 195.
    Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY, Babitt JL (2009) BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 41:482–487PubMedCrossRefGoogle Scholar
  196. 196.
    Frazer DM, Anderson GJ (2003) The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol Dis 30:288–297PubMedCrossRefGoogle Scholar
  197. 197.
    Wilkins SJ, Frazer DM, Millard KN, McLaren GD, Anderson GJ (2006) Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood 107:1659–1664PubMedCrossRefGoogle Scholar
  198. 198.
    Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS (2008) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117:1926–1932CrossRefGoogle Scholar
  199. 199.
    Ahmad KA, Ahmann JR, Migas MC, Waheed A, Britton RS, Bacon BR, Sly WS, Fleming RE (2002) Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis 29:361–366PubMedCrossRefGoogle Scholar
  200. 200.
    Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673PubMedCrossRefGoogle Scholar
  201. 201.
    Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulos D, Camaschella C (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22PubMedCrossRefGoogle Scholar
  202. 202.
    Fleming RE, Britton RS, Waheed A, Sly WS, Bacon BR (2004) Pathogenesis of hereditary hemochromatosis. Clin Liver Dis 8:755–773PubMedCrossRefGoogle Scholar
  203. 203.
    Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M, Nemeth E, Thompson J, Risler JK, Zaborowska C, Babakaiff R, Radomski CC, Pape TD, Davidas O, Christakis J, Brissot P, Lockitch G, Ganz T, Hayden MR, Goldberg YP (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82PubMedCrossRefGoogle Scholar
  204. 204.
    Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803–1806PubMedCrossRefGoogle Scholar
  205. 205.
    Andrews NC (2008) Forging a field: the golden age of iron biology. Blood 112:219–230PubMedCrossRefGoogle Scholar
  206. 206.
    Kemna EH, Tjalsma H, Willems HL, Swinkels DW (2008) Hepcidin: from discovery to differential diagnosis. Haematologica 93:90–97PubMedCrossRefGoogle Scholar
  207. 207.
    Wrighting DM, Andrews NC (2008) Iron homeostasis and erythropoiesis. Curr Top Dev Biol 82:141–167PubMedCrossRefGoogle Scholar
  208. 208.
    Iacopetta BJ, Morgan EH, Yeoh GC (1982) Transferrin receptors and iron uptake during erythroid cell development. Biochim Biophys Acta 687:204–210PubMedCrossRefGoogle Scholar
  209. 209.
    Anderson GJ, Frazer DM (2005) Hepatic iron metabolism. Semin Liver Dis 25:420–432PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Iron Metabolism Laboratory, Queensland Institute of Medical ResearchPO Royal Brisbane HospitalBrisbaneAustralia
  2. 2.Department of Nutritional Science and ToxicologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations