Cellular and Molecular Life Sciences

, Volume 66, Issue 13, pp 2025–2035 | Cite as

Cohesins: chromatin architects in chromosome segregation, control of gene expression and much more

Review

Abstract

Cells have evolved to develop molecules and control mechanisms that guarantee correct chromosome segregation and ensure the proper distribution of genetic material to daughter cells. In this sense, the establishment, maintenance, and removal of sister chromatid cohesion is one of the most fascinating and dangerous processes in the life of a cell because errors in the control of these processes frequently lead to cell death or aneuploidy. The main protagonist in this mechanism is a four-protein complex denominated the cohesin complex. In the last 10 years, we have improved our understanding of the key players in the regulation of sister chromatid cohesion during cell division in mitosis and meiosis. The last 2 years have seen an increase in evidence showing that cohesins have important functions in non-dividing cells, revealing new, unexplored roles for these proteins in the control of gene expression, development, and other essential cell functions in mammals.

Keywords

Centrosomes Chromosome segregation Cohesin Cohesinopathies Gene expression control Insulators Neuron development Sister chromatid cohesion 

References

  1. 1.
    Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45PubMedCrossRefGoogle Scholar
  2. 2.
    Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997PubMedCrossRefGoogle Scholar
  3. 3.
    Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S cerevisiae. Cell 91:47–57PubMedCrossRefGoogle Scholar
  4. 4.
    Carramolino L, Lee BC, Zaballos A, Peled A, Barthelemy I, Shav-Tal Y, Prieto I, Carmi P, Gothelf Y, Gonzalez de Buitrago G, Aracil M, Marquez G, Barbero JL, Zipori D (1997) SA-1, a nuclear protein encoded by one member of a novel gene family: molecular cloning and detection in hemopoietic organs. Gene 195:151–159PubMedCrossRefGoogle Scholar
  5. 5.
    Losada A, Yokochi T, Kobayashi R, Hirano T (2000) Identification and characterization of SA/Scc3 subunits in the Xenopus and human cohesin complexes. J Cell Biol 150:405–416PubMedCrossRefGoogle Scholar
  6. 6.
    Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–762PubMedCrossRefGoogle Scholar
  7. 7.
    Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777PubMedCrossRefGoogle Scholar
  8. 8.
    Ivanov D, Nasmyth K (2005) A topological interaction between cohesin rings and a circular minichromosome. Cell 122:849–860PubMedCrossRefGoogle Scholar
  9. 9.
    Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745PubMedCrossRefGoogle Scholar
  10. 10.
    Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254PubMedCrossRefGoogle Scholar
  11. 11.
    Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM (2006) Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol 16:863–874PubMedCrossRefGoogle Scholar
  12. 12.
    Skibbens RV, Corson LB, Koshland D, Hieter P (1999) Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13:307–319PubMedCrossRefGoogle Scholar
  13. 13.
    Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Cft7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320–323PubMedCrossRefGoogle Scholar
  14. 14.
    Tanaka K, Yonekawa T, Kawasaki Y, Kai M, Furuya K, Iwasaki M, Murakami H, Yanagida M, Okayama H (2000) Fission yeast Eso1p is required for establishing sister chromatid cohesion during S phase. Mol Cell Biol 20:3459–3469PubMedCrossRefGoogle Scholar
  15. 15.
    Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12:323–328PubMedCrossRefGoogle Scholar
  16. 16.
    Hanna JS, Kroll ES, Lundblad V, Spencer FA (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 21:3144–3158PubMedCrossRefGoogle Scholar
  17. 17.
    Mayer ML, Pot I, Chang M, Xu H, Aneliunas V, Kwok T, Newitt R, Aebersold R, Boone C, Brown GW, Hieter P (2004) Identification of protein complexes required for efficient sister chromatid cohesion. Mol Cell Biol 15:1736–1745CrossRefGoogle Scholar
  18. 18.
    Wang F, Yoder J, Antoshechkin I, Han M (2003) Caenorhabditis elegans EVL-14/PDS-5 and SCC-3 are essential for sister chromatid cohesion in meiosis and mitosis. Mol Cell Biol 23:7698–7707PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Z, Ren Q, Yang H, Conrad MN, Guacci V, Kateneva A, Dresser ME (2005) Budding yeast PDS5 plays an important role in meiosis and is required for sister chromatid cohesion. Mol Microbiol 56:670–680PubMedCrossRefGoogle Scholar
  20. 20.
    Gandhi R, Gillespie PJ, Hirano T (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol 16:2406–2417PubMedCrossRefGoogle Scholar
  21. 21.
    Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters JM (2006) Wapl controls the dynamic association of cohesin with chromatin. Cell 127:955–967PubMedCrossRefGoogle Scholar
  22. 22.
    Rankin S, Ayad NG, Kirschner MW (2005) Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell 18:185–200PubMedCrossRefGoogle Scholar
  23. 23.
    Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11:741–750PubMedCrossRefGoogle Scholar
  24. 24.
    Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42PubMedCrossRefGoogle Scholar
  25. 25.
    Cohen-Fix O, Peters JM, Kirschner MW, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10:3081–3093PubMedCrossRefGoogle Scholar
  26. 26.
    Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M (1996) Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381:438–441PubMedCrossRefGoogle Scholar
  27. 27.
    Ciosk R, Zacharie W, Michaelis C, Shevchenco A, Mann M, Nasmyth K (1998) An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93:1067–1076PubMedCrossRefGoogle Scholar
  28. 28.
    Zou H, McGarry TJ, Bernal T, Kirschner MW (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285:418–422PubMedCrossRefGoogle Scholar
  29. 29.
    Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410PubMedCrossRefGoogle Scholar
  30. 30.
    Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM (2005) Dissociation of cohesions from chromosome arms and loss of arm cohesion during early mitosis depends on phsophorylation of SA2. PLoS Biol 3:419–432CrossRefGoogle Scholar
  31. 31.
    Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–386PubMedCrossRefGoogle Scholar
  32. 32.
    Nakajima M, Kumada K, Hatakeyama K, Noda T, Peters JM, Hirota T (2007) The complete removal of cohesin from chromosome arms depends on separase. J Cell Biol 120:4188–4196Google Scholar
  33. 33.
    Vernì F, Gandhi R, Goldberg ML, Gatti M (2000) Genetic and molecular analysis of wings apart-like (wapl), a gene controlling heterochromatin organization in Drosophila melanogaster. Genetics 154:1693–1710PubMedGoogle Scholar
  34. 34.
    Kitajima TS, Yokobayashi S, Yamamoto M, Watanabe Y (2003) Distinct cohesin complexes organize meiotic chromosome domains. Science 300:1152–1155PubMedCrossRefGoogle Scholar
  35. 35.
    Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R (2001) Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 21:6984–6998PubMedCrossRefGoogle Scholar
  36. 36.
    Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JH, Kohli J (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19:3515–3528PubMedGoogle Scholar
  37. 37.
    Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464PubMedCrossRefGoogle Scholar
  38. 38.
    Prieto I, Suja JA, Pezzi N, Kremer L, Martínez-A C, Rufas JS, Barbero JL (2001) Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3:761–766PubMedCrossRefGoogle Scholar
  39. 39.
    Suja JA, Barbero JL (2009) Cohesin complexes and sister chromatid cohesion in mammalian meiosis In: Benavente R, Volff JN (eds). Genome dynamics, vol 5. Karger, Basel, pp 94-116Google Scholar
  40. 40.
    Alexandru G, Uhlmann F, Mechtler K, Poupart MA, Nasmyth K (2001) Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105:459–472PubMedCrossRefGoogle Scholar
  41. 41.
    Rogers E, Bishop JD, Waddle JA, Schumacher JM, Lin R (2002) The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol 157:219–229PubMedCrossRefGoogle Scholar
  42. 42.
    Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517PubMedCrossRefGoogle Scholar
  43. 43.
    Llano E, Gómez R, Gutiérrez-Caballero C, Herrán Y, Sánchez-Martín M, Vázquez-Quiñones L, Hernández T, de Alava E, Cuadrado A, Barbero JL, Suja JA, Pendás AM (2008) Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev 22:2400–2413PubMedCrossRefGoogle Scholar
  44. 44.
    Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52PubMedCrossRefGoogle Scholar
  45. 45.
    Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Gálová M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K, Nasmyth K (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61PubMedCrossRefGoogle Scholar
  46. 46.
    Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118:567–578PubMedCrossRefGoogle Scholar
  47. 47.
    Gómez R, Valdeolmillos A, Parra MT, Viera A, Carreiro C, Roncal F, Rufas JS, Barbero JL, Suja JA (2007) Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Rep 8:173–180PubMedCrossRefGoogle Scholar
  48. 48.
    Huang H, Feng J, Famulski J, Rattner JB, Liu ST, Kao GD, Muschel R, Chan GK, Yen TJ (2007) Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177:24–413CrossRefGoogle Scholar
  49. 49.
    Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y (2008) Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10:42–52PubMedCrossRefGoogle Scholar
  50. 50.
    Rankin S (2005) Sororin, the cell cycle and sister chromatid cohesion. Cell Cycle 4:1039–1042PubMedGoogle Scholar
  51. 51.
    Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ (2007) Regulation of centromeric cohesion by sororin independently of the APC/C. Cell Cycle 6:714–724PubMedGoogle Scholar
  52. 52.
    Schmitz J, Watrin E, Lénárt P, Mechtler K, Peters JM (2007) Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol 17:630–636PubMedCrossRefGoogle Scholar
  53. 53.
    Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:1325–1339CrossRefGoogle Scholar
  54. 54.
    Antoniacci LM, Skibbens RV (2006) Sister-chromatid telomere cohesion is non-redundant and resists both spindle forces and telomere motility. Curr Biol 16:902–906PubMedCrossRefGoogle Scholar
  55. 55.
    Dynek JN, Smith S (2004) Resolution of sister telomere association is required for progression through mitosis. Science 304:97–100PubMedCrossRefGoogle Scholar
  56. 56.
    Chang P, Coughlin M, Mitchison TJ (2005) Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7:1133–1139PubMedCrossRefGoogle Scholar
  57. 57.
    Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S (2007) Protein requirements for sister telomere association in human cells. EMBO J 26:4867–4878PubMedCrossRefGoogle Scholar
  58. 58.
    Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H (2005) Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 170:213–223PubMedCrossRefGoogle Scholar
  59. 59.
    Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562PubMedCrossRefGoogle Scholar
  60. 60.
    Scherthan H (2007) Telomere attachment and clustering during meiosis. Cell Mol Life Sci 64:117–124PubMedCrossRefGoogle Scholar
  61. 61.
    Watrin E, Peters JM (2006) Cohesin and DNA damage repair. Exp Cell Res 312:2687–2693PubMedCrossRefGoogle Scholar
  62. 62.
    Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–995PubMedCrossRefGoogle Scholar
  63. 63.
    Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster nipped-B. Nat Genet 36:631–635PubMedCrossRefGoogle Scholar
  64. 64.
    Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641PubMedCrossRefGoogle Scholar
  65. 65.
    Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, Vezzoni P, Larizza L (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38:528–530PubMedCrossRefGoogle Scholar
  66. 66.
    Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, Gil-Rodríguez C, Arnedo M, Loeys B, Kline AD, Wilson M, Lillquist K, Siu V, Ramos FJ, Musio A, Jackson LS, Dorsett D, Krantz ID (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80:485–494PubMedCrossRefGoogle Scholar
  67. 67.
    Van Den Berg DJ, Francke U (1993) Roberts syndrome: a review of 100 cases and a new rating system for severity. Am J Med Genet 47:1104–1123CrossRefGoogle Scholar
  68. 68.
    Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, Jabs EW, Inui K, Joenje H (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470PubMedCrossRefGoogle Scholar
  69. 69.
    Gordillo M, Vega H, Trainer AH, Hou F, Sakai N, Luque R, Kayserili H, Basaran S, Skovby F, Hennekam RC, Uzielli ML, Schnur RE, Manouvrier S, Chang S, Blair E, Hurst JA, Forzano F, Meins M, Simola KO, Raas-Rothschild A, Schultz RA, McDaniel LD, Ozono K, Inui K, Zou H, Jabs EW (2008) The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17:2172–2180PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang B, Jain S, Song H, Fu M, Heuckeroth RO, Erlich JM, Jay PY, Milbrandt J (2007) Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development 134:3191–3201PubMedCrossRefGoogle Scholar
  71. 71.
    Losada A, Yokochi T, Hirano T (2005) Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J Cell Sci 118:2133–2141PubMedCrossRefGoogle Scholar
  72. 72.
    McNairn AJ, Gerton JL (2008) Cohesinopathies: one ring, many obligations. Mutat Res 647:103–111PubMedGoogle Scholar
  73. 73.
    Liu J, Krantz ID (2008) Cohesin and human disease. Annu Rev Genomics Hum Genet 9:303–320PubMedCrossRefGoogle Scholar
  74. 74.
    Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708PubMedCrossRefGoogle Scholar
  75. 75.
    Hagstrom KA, Meyer BJ (2003) Condensin and cohesin: more than chromosome compactor and glue. Nat Rev Genet 4:520–534PubMedCrossRefGoogle Scholar
  76. 76.
    Rollins RA, Korom M, Aulner N, Martens A, Dorsett D (2004) Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol 24:3100–3111PubMedCrossRefGoogle Scholar
  77. 77.
    Lara-Pezzi E, Pezzi N, Prieto I, Barthelemy I, Carreiro C, Martínez A, Maldonado-Rodríguez A, López-Cabrera M, Barbero JL (2004) Evidence of a transcriptional co-activator function of cohesin STAG/SA/Scc3. J Biol Chem 279:6553–6559PubMedCrossRefGoogle Scholar
  78. 78.
    Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM (2008) Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 27:654–666PubMedCrossRefGoogle Scholar
  79. 79.
    Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801PubMedCrossRefGoogle Scholar
  80. 80.
    Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433PubMedCrossRefGoogle Scholar
  81. 81.
    Rubio E-D, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 105:8309–8314PubMedCrossRefGoogle Scholar
  82. 82.
    Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, Gygi SP, Koshland DE (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321:566–569PubMedCrossRefGoogle Scholar
  83. 83.
    Ben-Shahar TR, Heeger S, Lehane C, East P, Flynn H, Skehel M, Uhlmann F (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321:563–566PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, Zhang P, Kim ST, Pan X, Qin J (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31:143–151PubMedCrossRefGoogle Scholar
  85. 85.
    Haering CH, Löwe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788PubMedCrossRefGoogle Scholar
  86. 86.
    Schuldiner O, Berdnik D, Levy JM, Wu JS, Luginbuhl D, Gontang AC, Luo L (2008) piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 14:227–238PubMedCrossRefGoogle Scholar
  87. 87.
    Takagi S, Benard C, Pak J, Livingstone D, Hekimi S (1997) Cellular and axonal migrations are misguided along both body axes in the maternal-effect mau-2 mutants of Caenorhabditis elegans. Development 124:5115–5126PubMedGoogle Scholar
  88. 88.
    Seitan VC, Banks P, Laval S, Majid NA, Dorsett D, Rana A, Smith J, Bateman A, Krpic S, Hostert A, Rollins RA, Erdjument-Bromage H, Tempst P, Benard CY, Hekimi S, Newbury SF, Strachan T (2006) Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol 4:1411–1425CrossRefGoogle Scholar
  89. 89.
    Pauli A, Althoff F, Oliveira RA, Heidmann S, Schuldiner O, Lehner CF, Dickson BJ, Nasmyth K (2008) Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 14:239–251PubMedCrossRefGoogle Scholar
  90. 90.
    Horsfield JA, Anagnostou SH, Hu JK, Cho KHY, Geister R, Lieschke G, Crosier KE, Crosier PS (2007) Cohesin dependent regulation of Runx genes. Development 134:2639–2649PubMedCrossRefGoogle Scholar
  91. 91.
    Revenkova E, Focarelli ML, Susani L, Paulis M, Bassi MT, Mannini L, Frattini A, Delia D, Krantz I, Vezzoni P, Jessberger R, Musio A (2008) Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to DNA. Hum Mol Genet 18:418–427Google Scholar
  92. 92.
    Gregson CH, Schmiesing JA, Kim JS, Kobayashi SZ, Yokomori K (2001) Potential role for human cohesin in mitotic spindle aster assembly. J Biol Chem 276:47575–47582PubMedCrossRefGoogle Scholar
  93. 93.
    Wong W, Blobel G (2008) Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proc Natl Acad Sci USA 105:15441–15445PubMedCrossRefGoogle Scholar
  94. 94.
    Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY-HP, In Y (2002) SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 16: 571-582Google Scholar
  95. 95.
    Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB (2004) Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18:1423–1438PubMedCrossRefGoogle Scholar
  96. 96.
    Kim ST, Xu B, Kastan MB (2002) Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16:560–570PubMedCrossRefGoogle Scholar
  97. 97.
    Luo H, Li Y, Mu JJ, Zhang J, Tonaka T, Hamamori Y, Jung SY, Wang Y, Qin J (2008) Regulation of intra-S phase checkpoint by ionizing radiation (IR)-dependent and IR-independent phosphorylation of SMC3. J Biol Chem 283:19176–19182Google Scholar
  98. 98.
    Shimizu K, Shirataki H, Honda T, Minami S, Takai Y (1998) Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide. J Biol Chem 273:6591–6594PubMedCrossRefGoogle Scholar
  99. 99.
    Guan J, Etwurtzel E, Kvist U, Yuan L (2008) Cohesin protein SMC1 is a centrosomal protein. Biochem Biophys Res Commun 372:761–764PubMedCrossRefGoogle Scholar
  100. 100.
    Wang X, Yang Y, Dai W (2006) Different subcellular localizations of two human Sgo1 isoforms. Cell Cycle 5:635–640PubMedGoogle Scholar
  101. 101.
    Wang X, Yang Y, Duan Q, Jiang N, Huang Y, Darzynkiewicz Z, Dai W (2008) sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Dev Cell 14:331–341PubMedCrossRefGoogle Scholar
  102. 102.
    Skibbens RV (2008) Mechanisms of sister chromatid pairing. Int Rev Cell Mol Biol 269:283–339PubMedCrossRefGoogle Scholar
  103. 103.
    Peters JM, Tedeschi A, Schmitz J (2008) The cohesin complex and its roles in chromosome biology. Genes Dev 22:3089–3114PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Departamento de Biología Celular y del DesarrolloCentro de Investigaciones Biológicas (CSIC)MadridSpain

Personalised recommendations