Skip to main content
Log in

Dependence receptors: between life and death

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The recently described family of dependence receptors is a new family of functionally related receptors. These proteins have little sequence similarity but display the common feature of inducing two completely opposite intracellular signals depending on ligand availability: in the presence of ligand, these receptors transduce a positive signal leading to survival, differentiation or migration, while in the absence of ligand, the receptors initiate or amplify a negative signal for apoptosis. Thus, cells that express these proteins manifest a state of dependence on their respective ligands. The mechanisms that trigger cell death induction in the absence of ligand are in large part unknown, but typically require cleavage by specific caspases. In this review we will present the proposed mechanisms for cell death induction by these receptors and their potential function in nervous system development and regulation of tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabizadeh S., Oh J., Zhong L. T., Yang J., Bider C. M., Butcher L. L. et al. (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261(5119): 345–348

    Article  CAS  PubMed  Google Scholar 

  2. Mehlen P., Rabizadeh S., Snipas S. J., Assa-Munt N., Salvesen G. S. and Bredesen D. E. (1998) The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395(6704): 801–804

    Article  CAS  PubMed  Google Scholar 

  3. Llambi F., Causeret F., Bloch-Gallego E. and Mehlen P. (2001) Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J. 20(11): 2715–2722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ellerby L. M., Hackam A. S., Propp S. S., Ellerby H. M., Rabizadeh S., Cashman N. R. et al. (1999) Kennedy's disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity. J. Neurochem. 72(1): 185–195

    Article  CAS  PubMed  Google Scholar 

  5. Bordeaux M. C., Forcet C., Granger L., Corset V., Bidaud C., Billaud M. et al. (2000) The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 19(15): 4056–4063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Stupack D. G., Puente X. S., Boutsaboualoy S., Storgard C. M. and Cheresh D. A. (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 155(3): 459–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ruoslahti E. and Reed J. C. (1994) Anchorage dependence, integrins and apoptosis. Cell 77(4): 477–478

    Article  CAS  PubMed  Google Scholar 

  8. Thibert C., Teillet M. A., Lapointe F., Mazelin L., Le Douarin N. M. and Mehlen P. (2003) Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science 301(5634): 843–846

    Article  CAS  PubMed  Google Scholar 

  9. Levi-Montalcini R. (1966) The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lect. 60: 217–259

    CAS  PubMed  Google Scholar 

  10. Chao M. V., Bothwell M. A., Ross A. H., Koprowski H., Lanahan A. A., Buck C. R. et al. (1986) Gene transfer and molecular cloning of the human NGF receptor. Science 232(4749): 518–521.

    Article  CAS  PubMed  Google Scholar 

  11. Radeke M. J., Misko T. P., Hsu C., Herzenberg L. A. and Shooter E. M. (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325(6105): 593–597

    Article  CAS  PubMed  Google Scholar 

  12. Hempstead B. L., Martin-Zanca D., Kaplan D. R., Parada L. F. and Chao M. V. (1991) High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350(6320): 678–683

    Article  CAS  PubMed  Google Scholar 

  13. Ibanez C. F. (1994) Structure-function relationships in the neurotrophin family. J. Neurobiol. 25(11): 1349–1361

    Article  CAS  PubMed  Google Scholar 

  14. Lee F. S., Kim A. H., Khursigara G. and Chao M. V (2001) The uniqueness of being a neurotrophin receptor. Curr. Opin. Neurobiol. 11(3): 281–286

    Article  CAS  PubMed  Google Scholar 

  15. Verdi J. M., Birren S. J., Ibanez C. F., Persson H., Kaplan D. R., Benedetti M. et al. (1994) p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12(4): 733–745

    Article  CAS  PubMed  Google Scholar 

  16. Chao M. V (1994) The p75 neurotrophin receptor. J. Neurobiol. 25(11): 1373–1385

    Article  CAS  PubMed  Google Scholar 

  17. Barrett G. L. and Bartlett P. F. (1994) The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc. Natl. Acad. Sci. USA 91(14): 6501–6505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rabizadeh S. and Bredesen D. E. (2003) Ten years on: mediation of cell death by the common neurotrophin receptor p75(NTR). Cytokine Growth Factor Rev. 14(3–4): 225–239

    Article  CAS  PubMed  Google Scholar 

  19. Yeo T. T., Chua-Couzens J., Butcher L. L., Bredesen D. E., Cooper J. D., Valletta J. S. et al. (1997) Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity and target innervation. J. Neurosci. 17(20): 7594–7605

    CAS  PubMed  Google Scholar 

  20. Naumann T., Casademunt E., Hollerbach E., Hofmann J., Dechant G., Frotscher M. et al. (2002) Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J. Neurosci. 22(7): 2409–2418

    CAS  PubMed  Google Scholar 

  21. Sauer H., Nishimura M. C. and H. S. P. (1996) Deletion of the p75NTR gene attenuates septal cholinergic cell loss in mice heterozygous for a deletion of the NGF gene. Soc. Neurosci. Abs. (22): 513–514

    Google Scholar 

  22. Casaccia-Bonnefil P., Carter B. D., Dobrowsky R. T. and Chao M. V (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383(6602):716–719

    Article  CAS  PubMed  Google Scholar 

  23. Frade J. M., Rodriguez-Tebar A. and Barde Y. A. (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383(6596): 166–168

    Article  CAS  PubMed  Google Scholar 

  24. Bredesen D. E. and Rabizadeh S. (1997) p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci. 20(7): 287–290

    Article  CAS  PubMed  Google Scholar 

  25. Bredesen D. E., Ye X., Tasinato A., Sperandio S., Wang J. J., Assa-Munt N. et al. (1998) p75NTR and the concept of cellular dependence: seeing how the other half die. Cell Death Differ. 5(5): 365–371

    Article  CAS  PubMed  Google Scholar 

  26. Majdan M., Walsh G. S., Aloyz R. and Miller E D. (2001) TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 155(7): 1275–1285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Fearon E. R., Cho K. R., Nigro J. M., Kern S. E., Simons J. W., Ruppert J. M. et al. (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247(4938):49–56

    Article  CAS  PubMed  Google Scholar 

  28. Serafini T., Kennedy T. E., Galko M. J., Mirzayan C., Jessell T. M. and Tessier-Lavigne M. (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78(3): 409–424

    Article  CAS  PubMed  Google Scholar 

  29. Serafini T., Colamarino S. A., Leonardo E. D., Wang H., Beddington R., Skarnes W. C. et al. (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87(6): 1001–1014

    Article  CAS  PubMed  Google Scholar 

  30. de la Torre J. R., Hopker V. H., Ming G. L., Poo M. M., Tessier-Lavigne M., Hemmati-Brivanlou A. et al. (1997) Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 19(6): 1211–1224

    Article  PubMed  Google Scholar 

  31. Colamarino S. A. and Tessier-Lavigne M. (1995) The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81(4): 621–629

    Article  CAS  PubMed  Google Scholar 

  32. Mehlen P. and Mazelin L. (2003) The dependence receptors DCC and UNC5H as a link between neuronal guidance and survival. Biol. Cell 95: 425–436

    Article  CAS  PubMed  Google Scholar 

  33. Cho K. R., Oliner J. D., Simons J. W., Hedrick L., Fearon E. R., Preisinger A. C. et al. (1994) The DCC gene: structural analysis and mutations in colorectal carcinomas. Genomics 19(3): 525–531

    Article  CAS  PubMed  Google Scholar 

  34. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M. et al. (1988) Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319(9): 525–532

    Article  CAS  PubMed  Google Scholar 

  35. Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y et al. (1989) Allelotype of colorectal carcinomas. Science 244(4901): 207–211

    Article  CAS  PubMed  Google Scholar 

  36. Fearon E. R. and Vogelstein B. (1990) A genetic model for colorectal tumorigenesis. Cell 61(5): 759–767

    Article  CAS  PubMed  Google Scholar 

  37. Mehlen P. and Fearon E. R. Role of the dependence receptor DCC in colorectal cancer pathogenesis. J. Clin. Oncology, in press.

  38. Sato K., Tamura G., Tsuchiya T., Endoh Y., Usuba O., Kimura W. et al. (2001) Frequent loss of expression without sequence mutations of the DCC gene in primary gastric cancer. Br. J. Cancer 85(2): 199–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fearon E. R. (1996) DCC: is there a connection between tumorigenesis and cell guidance molecules? Biochim. Biophys. Acta 1288(2): M17–23

    PubMed  Google Scholar 

  40. Shibata D., Reale M. A., Lavin P., Silverman M., Fearon E. R., Steele G., Jr et al. (1996) The DCC protein and prognosis in colorectal cancer. N. Engl. J. Med. 335(23): 1727–1732

    Article  CAS  PubMed  Google Scholar 

  41. Sun X. F., Rutten S., Zhang H. and Nordenskjold B. (1999) Expression of the deleted in colorectal cancer gene is related to prognosis in DNA diploid and low proliferative colorectal adenocarcinoma. J. Clin. Oncol. 17(6): 1745–1750

    CAS  PubMed  Google Scholar 

  42. Klingelhutz A. J., Smith P. P., Garrett L. R. and McDougall J. K. (1993) Alteration of the DCC tumor-suppressor gene in tumorigenic HPV 18 immortalized human keratinocytes transformed by nitrosomethylurea. Oncogene 8(1): 95–99

    CAS  PubMed  Google Scholar 

  43. Velcich A., Corner G., Palumbo L. and Augenlicht L. (1999) Altered phenotype of HT29 colonic adenocarcinoma cells following expression of the DCC gene. Oncogene 18(16): 2599–606.

    Article  CAS  PubMed  Google Scholar 

  44. Riggins G. J., Thiagalingam S., Rozenblum E., Weinstein C. L., Kern S. E., Hamilton S. R. et al. (1996) Mad-related genes in the human. Nat. Genet. 13(3): 347–349

    Article  CAS  PubMed  Google Scholar 

  45. Thiagalingam S., Lengauer C., Leach E S., Schutte M., Hahn S. A., Overhauser J. et al. (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet. 13(3): 343–346

    Article  CAS  PubMed  Google Scholar 

  46. Fazeli A., Dickinson S. L., Hermiston M. L., Tighe R. V., Steen R. G., Small C. G. et al. (1997) Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386(6627):796–804

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y Q., Hsieh J. T., Yao F., Fang B., Pong R. C., Cipriano S. C. et al. (1999) Induction of apoptosis and G2/M cell cycle arrest by DCC. Oncogene 18(17): 2747–2754

    Article  CAS  PubMed  Google Scholar 

  48. Forcet C., Ye X., Granger L., Corset V, Shin H., Bredesen D. E. et al. (2001) The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc. Natl. Acad. Sci. USA 98(6): 3416–3421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Liu J., Yao F., Wu R., Morgan M., Thorburn A., Finley R. L., Jr et al. (2002) Mediation of the DCC apoptotic signal by DIP13 alpha. J. Biol. Chem. 277(29): 26281–26285

    Article  CAS  PubMed  Google Scholar 

  50. Hedgecock E. M., Culotti J. G. and Hall D. H. (1990) The unc-5, unc-6 and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4(1): 61–85

    Article  CAS  PubMed  Google Scholar 

  51. Chan S. S., Zheng H., Su M. W., Wilk R., Killeen M. T., Hedgecock E. M. et al. (1996) UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87(2): 187–195

    Article  CAS  PubMed  Google Scholar 

  52. Leonardo E. D., Hinck L., Masu M., Keino-Masu K., Ackerman S. L. and Tessier-Lavigne M. (1997) Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386(6627): 833–838

    Article  CAS  PubMed  Google Scholar 

  53. Hong K., Hinck L., Nishiyama M., Poo M. M., Tessier-Lavigne M. and Stein E. (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97(7): 927–941

    Article  CAS  PubMed  Google Scholar 

  54. Tanikawa C., Matsuda K., Fukuda S., Nakamura Y. and Arakawa H. (2003) p53RDL1 regulates p53-dependent apoptosis. Nat. Cell Biol. 5(3): 216–223

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi M. and Cooper G. M. (1987) ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol. Cell. Biol. 7(4): 1378–1385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Takeichi M. (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251(5000): 1451–1455

    Article  CAS  PubMed  Google Scholar 

  57. Manic S., Santoro M., Fusco A. and Billaud M. (2001) The RET receptor: function in development and dysfunction in congenital malformation. Trends. Genet. 17(10): 580–589

    Article  Google Scholar 

  58. Baloh R. H., Tansey M. G., Golden J. P., Creedon D. J., Heuckeroth R. O., Keck C. L. et al. (1997) Milbrandt J. TmR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron 18(5): 793–802

    Article  CAS  PubMed  Google Scholar 

  59. Schuchardt A., D'Agati V., Larsson-Blomberg L., Costantini F. and Pachnis V. (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367(6461): 380–383

    Article  CAS  PubMed  Google Scholar 

  60. Sanchez M. P., Silos-Santiago I., Frisen J., He B., Lira S. A. and Barbacid M. (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382(6586): 70–73

    Article  CAS  PubMed  Google Scholar 

  61. Cacalano G., Farinas I., Wang L. C., Hagler K., Forgie A., Moore M. et al. (1998) GFRalphal is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21(1): 53–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Mulligan L. M., Kwok J. B., Healey C. S., Elsdon M. J., Eng C., Gardner E. et al. (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363(6428): 458–460

    Article  CAS  PubMed  Google Scholar 

  63. Romeo G., Ronchetto P., Luo Y., Barone V., Seri M., Ceccherini I. et al. (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 367(6461): 377–378

    Article  CAS  PubMed  Google Scholar 

  64. Pasini B., Ceccherini I. and Romeo G. (1996) RET mutations in human disease. Trends Genet. 12(4): 138–144

    Article  CAS  PubMed  Google Scholar 

  65. Stupack D. G. and Cheresh D. A. (2002) Get a ligand, get a life: integrins, signaling and cell survival. J. Cell Sci. 115(Pt 19):3729–3738

    Article  CAS  PubMed  Google Scholar 

  66. Hood J. D. and Cheresh D. A. (2002) Role of integrins in cell invasion and migration. Nat. Rev. Cancer ) 2(2): 91–100

    Article  PubMed  Google Scholar 

  67. Jessell T. M. (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1(1): 20–29

    Article  CAS  PubMed  Google Scholar 

  68. Murone M., Rosenthal A. and de Sauvage E J. (1999) Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9(2): 76–84

    Article  CAS  PubMed  Google Scholar 

  69. Ingham P. W. and McMahon A. P (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15(23):3059–3087

    Article  CAS  PubMed  Google Scholar 

  70. Marigo V., Davey R. A., Zuo Y., Cunningham J. M. and Tabin C. J. (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384(6605): 176–179

    Article  CAS  PubMed  Google Scholar 

  71. Stone D. M., Hynes M., Armanini M., Swanson T. A., Gu Q., Johnson R. L. et al. (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384(6605): 129–134

    Article  CAS  PubMed  Google Scholar 

  72. Taipale J., Cooper M. K., Maiti T. and Beachy P A. (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418(6900): 892–897

    Article  CAS  PubMed  Google Scholar 

  73. Charrier J. B., Teillet M. A., Lapointe F. and Le Douarin N. M. (1999) Defining subregions of Hensen's node essential for caudalward movement, midline development and cell survival. Development 126(21): 4771–4783

    CAS  PubMed  Google Scholar 

  74. Charrier J. B., Lapointe F., Le Douarin N. M. and Teillet M. A. (2001) Anti-Aopotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis. Development 128(20):4011–4020

    CAS  PubMed  Google Scholar 

  75. Wicking C. and McGlinn E. (2001) The role of hedgehog signalling in tumorigenesis. Cancer Lett. 173(1): 1–7

    Article  CAS  PubMed  Google Scholar 

  76. Lee D. K. and Chang C. (2003) Molecular communication between androgen receptor and general transcription machinery. J. Steroid Biochem. Mol. Biol. 84(1): 41–49

    Article  CAS  PubMed  Google Scholar 

  77. Clark P. E., Irvine R. A. and Coetzee G. A. (2003) The androgen receptor CAG repeat and prostate cancer risk. Methods Mol. Med. 81: 255–266

    CAS  PubMed  Google Scholar 

  78. La Spada A. R., Wilson E. M., Lubahn D. B., Harding A. E. and Fischbeck K. H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79

    Article  PubMed  Google Scholar 

  79. Fischbeck K. H. (1997) Kennedy disease. J. Inherit. Metab. Dis. 20(2): 152–158

    Article  CAS  PubMed  Google Scholar 

  80. Zupan A. A. and Johnson E. M., Jr (1991) Evidence for endocytosis-dependent proteolysis in the generation of soluble truncated nerve growth factor receptors by A875 human melanoma cells. J. Biol. Chem. 266(23): 15384–15390

    CAS  PubMed  Google Scholar 

  81. Kanning K. C, Hudson M., Amieux P. S., Wiley J. C., Bothwell M. and Schecterson L. C. (2003) Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J. Neurosci. 23(13): 5425–5436

    CAS  PubMed  Google Scholar 

  82. Hofinann K. and Tschopp J. (1995) The death domain motif found in Fas (Apo-1) and TNT receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Lett. 371(3): 321–323

    Article  Google Scholar 

  83. Rabizadeh S., Ye X., Sperandio S., Wang J. J., Ellerby H. M., Ellerby L. M. et al. (2000) Neurotrophin dependence domain: a domain required for the mediation of apoptosis by the p75 neurotrophin receptor. J. Mol. Neurosci. 15(3): 215–229

    Article  CAS  PubMed  Google Scholar 

  84. Coulson E. J., Reid K., Baca M., Shipham K. A., Hulett S. M., Kilpatrick T. J. et al. (2000) Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J. Biol. Chem. 275(39): 30537–30545

    Article  CAS  PubMed  Google Scholar 

  85. Williams M. E., Strickland P., Watanabe K. and Hinck L. (2003) UNC5H1 induces apoptosis via its juxtamembrane domain through an interaction with NRAGE. J. Biol. Chem.

    Google Scholar 

  86. Salehi A. H., Roux P. P., Kubu C. J., Zeindler C., Bhakar A., Tannis L. L. et al. (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27(2): 279–288

    Article  CAS  PubMed  Google Scholar 

  87. Wang J. J., Rabizadeh S., Tasinato A., Sperandio S., Ye X., Green M. et al. (2000) Dimerization-dependent block of the proapoptotic effect of p75(NTR). J. Neurosci. Res. 60(5): 587–593

    Article  CAS  PubMed  Google Scholar 

  88. Stein E., Zou Y., Poo M. and Tessier-Lavigne M. (2001) Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291(5510): 1976–1982

    Article  CAS  PubMed  Google Scholar 

  89. Salvesen G. S. and Dixit V. M. (1997) Caspases: intracellular signaling by proteolysis. Cell 91(4): 443–446

    Article  CAS  PubMed  Google Scholar 

  90. Yang X., Chang H. Y. and Baltimore D. (1998) Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell. 1(2): 319–325

    Article  CAS  PubMed  Google Scholar 

  91. Salvesen G. S. and Duckett C. S. (2002) IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell. Biol. 3(6): 401–410

    Article  CAS  PubMed  Google Scholar 

  92. Fernando P., Kelly J. F., Balazsi K., Slack R. S. and Megeney L. A. (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. USA 99(17): 11025–11030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Campbell D. S. and Holt C. E. (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37(6): 939–952

    Article  CAS  PubMed  Google Scholar 

  94. Keino-Masu K., Masu M., Hinck L., Leonardo E. D., Chan S. S., Culotti J. G. et al. (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87(2): 175–185

    Article  CAS  PubMed  Google Scholar 

  95. Bloch-Gallego E., Ezan F., Tessier-Lavigne M. and Sotelo C. (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J. Neurosci. 19(11): 4407–4420

    CAS  PubMed  Google Scholar 

  96. Yee K. T., Simon H. H., Tessier-Lavigne M., O'Leary D. M. (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24(3): 607–622

    Article  CAS  PubMed  Google Scholar 

  97. Jiang Y., Min-tsai L. and Gershon M. D. (2003) Netrins and DCC in the guidance of migrating neural Crest-Derived Cells in the developing bowel and pancreas. Dev. Biol. 258: 364–384

    Article  CAS  PubMed  Google Scholar 

  98. Pelet A., Geneste O., Edery P., Pasini A., Chappuis S., Atti T. et al. (1998) Various mechanisms cause RET mediated signaling defects in Hirschsprung's disease. J. Clin. Invest. 101(6): 1415–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Charron F., Stein E., Jeong J., McMahon A. P. and Tessier-Lavigne M. (2003) The morphogen Sonic Hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113(1): 11–23

    Article  CAS  PubMed  Google Scholar 

  100. Wang K. C., Kim J. A., Sivasankaran R., Segal R. and He Z. (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420(6911): 74–78

    Article  CAS  PubMed  Google Scholar 

  101. Hopker V. H., Shewan D., Tessier-Lavigne M., Poo M. and Holt C. (1999) Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401(6748): 69–73

    Article  CAS  PubMed  Google Scholar 

  102. Pasterkamp R. J., Peschon J. J, Spriggs M. K. and Kolodkin A. L. (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424(6947): 398–405

    Article  PubMed  CAS  Google Scholar 

  103. Giovannucci E., Stampfer M. J., Krithivas K., Brown M., Dahl D., Brufsky A. et al. (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl. Acad. Sci. USA 94(7): 3320–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Pflug B. R., Onoda M., Lynch J. H. and Djakiew D. (1992) Reduced expression of the low affinity nerve growth factor receptor in benign and malignant human prostate tissue and loss of expression in four human metastatic prostate tumor cell lines. Cancer Res. 52(19): 5403–5406

    CAS  PubMed  Google Scholar 

  105. Ookawa K., Sakamoto M., Hirohashi S., Yoshida Y., Sugimura T., Terada M. et al. (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Int. J. Cancer 53(3): 382–387

    Article  CAS  PubMed  Google Scholar 

  106. Koike C., Mizutani T., Ito T., Shimizu Y., Yamamichi N., Kameda T. et al. (2002) Introduction of wild-type patched gene suppresses the oncogenic potential of human squamous cell carcinoma cell lines including A431. Oncogene 21(17): 2670–2678

    Article  CAS  PubMed  Google Scholar 

  107. Oro A. E., Higgins K. M., Hu Z., Bonifas J. M., Epstein E. H., Jr and Scott M. P (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276(5313): 817–821

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mehlen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehlen, P., Thibert, C. Dependence receptors: between life and death. Cell. Mol. Life Sci. 61, 1854–1866 (2004). https://doi.org/10.1007/s00018-004-3467-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-004-3467-7

Key words