Skip to main content
Log in

What’s in a Name Change?

Solid State Physics, Condensed Matter Physics, and Materials Science

  • Published:
Physics in Perspective Aims and scope Submit manuscript

Abstract

When solid state physics emerged in the 1940s, its name was controversial. By the 1970s, some physicists came to prefer “condensed matter” as a way to identify the discipline of physics examining complex matter. Physicists and historians often gloss this transition as a simple rebranding of a problematically named field, but attention to the motives behind these names reveals telling nuances. “Solid state physics” and “condensed matter physics”—along with “materials science,” which also emerged during the Cold War—were named in accordance with ideological commitments about the identity of physics. Historians, therefore, can profitably understand solid state and condensed matter physics as distinct disciplines. Condensed matter, rather than being continuous with solid state physics, should be considered alongside materials science as an outlet for specific frustrations with the way solid state was organized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The agency’s name vacillated between ARPA and DARPA (Defense Advanced Research Projects Agency) as the agency underwent sinusoidal acknowledgement of its focus on military research. To avoid confusion, I refer to it as ARPA throughout. For reference, it was founded as ARPA in 1958, changed its name to DARPA in 1972, dropped the “D” in 1993, and restored it in 1996.

  2. In 1975, this journal was absorbed into Zeitschrift für Physik when the latter split into two sections, the second of which was devoted to condensed matter and general physics.

  3. Common lore holds that Anderson and Volker Heine coined “condensed matter” in 1967 while Anderson was a visitor in Cambridge and they changed the name of the solid state theory group at the Cavendish Laboratory to “theory of condensed matter.” Earlier occurrences of the term, in particular in the Springer journal title, belie this simple origin story, but the adoption of the term by a major UK research unit no doubt raised its profile in the Anglophone world.

References

  1. O. E. Buckley, “What’s in a Name?” Review of Scientific Instruments 15 (1944), 301–304, on 301.

  2. “Report of National Research Council Conference of Physicists,” Rev. Sci. Inst. 15 (1944), 283–328.

  3. On biology and natural history, see Vassiliki Betty Smocovitis, Unifying Biology: The Evolutionary Synthesis and Evolutionary Biology (Princeton, NJ: Princeton University Press, 1996); Lynn K. Nyhart, “Natural History and the ‘New’ Biology,” in Nicholas Jardine et al., eds., Cultures of Natural History (Cambridge: Cambridge University Press, 1996), 426–446. Physics and natural philosophy are addressed in Iwo Amelung, “Naming Physics: The Strife to Delineate a Field of Modern Science in Late Imperial China,” in Michael Lackner and Natascha Vittinghoff, eds., Mapping Meanings: The Field of Learning in Late Quing China (Leiden: Koninklijke Brill NV, 2004); Susan Faye Cannon, Science in Culture: The Early Victorian Period (New York: Neale Watson Academic Publishing, 1978); John L. Heilbron, “Natural Philosophy,” in Peter Harrison et al., eds., Wrestling with Nature: From Omens to Science (Chicago: University of Chicago Press, 2011). On the continuities and discontinuities between alchemy and chemistry, see Bruce T. Moran, Distilling Knowledge: Alchemy, Chemistry, and the Scientific Revolution (Cambridge, MA: Harvard University Press, 2005); William R. Newman and Lawrence M. Principe, “Alchemy vs. Chemistry: The Etymological Origins of a Historiographical Mistake,” Early Science and Medicine 3 (1998), 32–65.

  4. Philip W. Anderson, More and Different: Notes from a Thoughtful Curmudgeon (Singapore: World Scientific, 2011), 90.

  5. Helge Kragh, Quantum Generations: A History of Physics in the Twentieth Century (Princeton, NJ: Princeton University Press, 1999), 366. Kragh has more recently made his own observations about the importance of names in “Naming the Big Bang,” Historical Studies in the Natural Sciences 44 (2014), 3–36.

  6. Walter Kohn, “An Essay on Condensed Matter Physics in the Twentieth Century,” Reviews of Modern Physics 71 (1999), S57–S77.

  7. Spencer Weart, “The Solid Community,” in Lillian Hoddeson et al., eds., Out of the Crystal Maze (Oxford: Oxford University Press, 1992), 651.

  8. On frontier rhetoric in high energy physics, see Lillian Hoddeson, Adrienne W. Kolb, and Catherine Westfall, Fermilab: Physics, the Frontier and Megascience (Chicago: University of Chicago Press, 2009).

  9. Christian Joas, “Campos que interagem: física quântica e a transferência de conceitos entre física de partículas, nuclear e do estado sólido,” in Olival Freire Jr., et al., eds., Teoria quântica: estudos históricos e implicações culturais (Campina Grande, Brasil: Livraria da física, 2011), pp. 109–151.

  10. Gregory A. Good has made a case for transcending an exclusive focus on small-scale practices when considering discipline formation and considering how disciplinary consensus can develop in response to large-scale professional and political pressures, an approach that this case study supports. Gregory A. Good, “The Assembly of Geophysics: Scientific Disciplines as Frameworks of Consensus,” Studies in History and Philosophy of Modern Physics 31 (2000), 259–292.

  11. Saul Dushman et al., “The Present War Is a Physicist’s War,” American Physical Society Division of Solid State Physics records of Roman Smoluchowski, 1943–1947, Niels Bohr Library and Archives, College Park, MD (hereafter Smoluchowski records), folder 3. Smoluchowski’s efforts are chronicled in Weart, “The Solid Community” (ref. 7) and Joseph D. Martin, “Solid Foundations: Structuring American Solid State Physics, 1939–1993.” PhD diss., University of Minnesota, 2013.

  12. Karl K. Darrow, “Formation of a Division of Solid State Physics in the American Physical Society,” memo to APS membership, May 1947, Smoluchowski records, folder 4.

  13. Roman Smoluchowski to Stanley R. March, July 10, 1947, Smoluchowski records, folder 4.

  14. Roman Smoluchowski to Sidney Siegel, December 17, 1943, Smoluchowski records, folder 1.

  15. Roman Smoluchowski to Conyers Herring, February 15, 1944, Smoluchowski records, folder 1.

  16. Quoted in Paul E. Klopsteg, “The Work of the War Policy Committee of the American Institute of Physics,” Rev. Sci. Inst. 14 (1943), 236–241, on 240.

  17. Karl Darrow to Frederick Seitz, May 16, 1944, Smoluchowski records, folder 1.

  18. Léon Brillouin to Saul Dushman, January 25, 1944, Smoluchowski records, folder 1.

  19. John Van Vleck to Saul Dushman, January 29, 1944, Smoluchowski records, folder 1.

  20. John Van Vleck to Roman Smoluchowski, February 16, 1944, Smoluchowski records, folder 1. This and subsequent translations are the author’s unless otherwise noted.

  21. See: Charles Midwinter and Michel Janssen, “Kuhn Losses Regained Van Vleck from Spectra to Susceptibilities,” in Massimiliano Badino and Jaume Navarro, eds., Research and Pedagogy: A History of Early Quantum Physics through its Textbooks (Berlin: Edition Open Access, 2013), 137–205.

  22. Darrow wrote Van Vleck to coordinate nominating Eugene Wigner for fellowship in the American Philosophical Society: “Amor Germanorum, rum cum coca cola, et debilitas memoriae sunt radices multorum malorum. Sicut recte dixisti, Wigner non est socius noster in Societate Philosophica Americana.” (“Love of the Germans, rum and Coca-Cola, and weakness of memory are the roots of many evils. As you have rightly said, Wigner is not our associate in the American Philosophical Society.”) Karl Darrow to John Van Vleck, May 15, 1945, Karl Kelchner Darrow Papers, 1872–1978, Niels Bohr Library and Archives, College Park, MD, box 19. Darrow was a visiting professor at Smith College in 1941. Van Vleck paid a visit, misplacing a pair of suspenders. The two exchanged a series of letters wondering if suspenders could be had in Smith colors and whether this reflected sartorial trends in seven sisters schools. John Van Vleck to Karl Darrow, March 6, 1941; Darrow to Van Vleck, March 13, 1941; and Van Vleck to Darrow, March 25, 1941, J. H. Van Vleck papers, 1853–1981, Niels Bohr Library and Archives, College Park, MD, box 9.

  23. G. H. Wannier, quoted in an untitled document, 1943, Smoluchowski records, folder 3.

  24. G. H. Wannier, “The Statistical Problem in Cooperative Phenomena,” Rev. Mod. Phys. 17 (1945), 50–60.

  25. J. H. Van Vleck, “A Survey of the Theory of Ferromagnetism,” Rev. Mod. Phys. 17 (1945), 30.

  26. R. M. Bozorth and H. J. Williams, “Effect of Small Stresses on Magnetic Properties,” Rev. Mod. Phys. 17 (1945), 72–60.

  27. Clarence Zener, “The Fracture Stress of Steel,” Rev. Mod. Phys. 17 (1945), 20–26.

  28. Otto Breck, “Catalysis—A Challenge to the Physicist,” Rev. Mod. Phys. 17 (1945), 61–71.

  29. Seitz became a major figure in American solid state physics before transitioning to administrative and advisory roles in the 1950s. His institutional acumen paved his way to the positions that would make him infamous as an advocate for tobacco and petroleum companies, the role for which he is better remembered today. Naomi Oreskes and Erik M. Conway, Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming (New York: Bloomsbury Press, 2010).

  30. Frederick Seitz, Modern Theory of Solids (New York: McGraw Hill, 1940).

  31. Charles Kittel, Introduction to Solid State Physics, 2nd edition (New York: John Wiley & Sons, 1955).

  32. John J. Hopfield, “Whatever Happened to Solid State Physics?,” Annual Reviews of Condensed Matter Physics 5 (2014), 1–13, on 3.

  33. Detailed accounts of the transistor’s invention and refinement can be found in Lillian Hoddeson, “The Discovery of the Point-Contact Transistor,” Historical Studies in the Physical Sciences 12 (1981), 41–76 and Michael Riordan, Lillian Hoddeson, and Conyers Herring, “The Invention of the Transistor,” Rev. Mod. Phys. 71 (1999), S336–S345.

  34. Kittel, Introduction to Solid State Physics (ref. 31), vii.

  35. National Academy of Sciences, National Research Council, Report of the National Academy of Sciences, 1953–54 (Washington, DC: National Academy of Science, 1954), 60.

  36. Ibid., 60.

  37. National Academy of Sciences, National Research Council, Report of the National Academy of Sciences, 1957–58 (Washington, DC: National Academy of Science, 1958), 46.

  38. Materials Advisory Board, “Standing Review of Department of Defense Materials Research and Development Program,” Frederick Seitz papers, 1935–1965, University of Illinois Archives, Urbana, IL, box 1, folder Air Research and Development Command, 1952–61 #1.

  39. Ibid.

  40. National Academy of Sciences, National Research Council, More Effective Organization and Administration of Materials Research and Development for National Security (Washington, DC: National Academy of Sciences, 1960), frontmatter.

  41. Ibid., vii.

  42. Lawrence H. Van Vlack, Elements of Materials Science (Reading, MA: Addison-Wesley, 1959), vii.

  43. Ibid., vii.

  44. “Interdisciplinary Laboratories for Basic Research in Materials Sciences,” John Clarke Slater papers, 1908–1976, American Philosophical Society, Philadelphia, PA (hereafter Slater papers), folder M.I.T. Dept. of Physics #39.

  45. Ibid.

  46. National Academy of Sciences, Advancing Materials Research (Washington, DC: The National Academies Press, 1987), 36.

  47. Cyrus Mody and Hyungsub Choi, “From Materials Science to Nanotechnology: Interdisciplinary Center Programs at Cornell University, 1960–2000,” Hist. Stud. Nat. Sci. 43 (2013), 121–161.

  48. See S. S. Schweber, “The Empiricist Temper Regnant: Theoretical Physics in the United States, 1920–1950,” Historical Studies in the Physical and Biological Sciences 17 (1986), 55–98 on the American style of theory that grew largely from the school Kemble established.

  49. Mildred Dresselhaus, interview with Joseph D. Martin, June 24, 2014.

  50. John C. Slater to John Kincaid, May 6, 1959, Slater papers, folder Kincaid, John F. #1.

  51. “The Interdisciplinary Nature of M.I.T. Research,” Slater papers, folder Proposal for a Materials Center at M.I.T., 1960.

  52. Arthur von Hippel, who established the LIR, recalled choosing an abstruse name as “a camouflage trick … to avoid stepping on sensitive toes by encroaching on the entrenched interests of physicists, chemists, and metallurgists in the materials field.” Arthur von Hippel, interview by Z. Malek, September 1969, Arthur von Hippel papers, Massachusetts Institute of Technology Archives and Special Collections, Cambridge, MA, box 1, folder 16.

  53. “Interdisciplinary Nature of M.I.T. Research” (ref. 51).

  54. Slater to Kincaid (ref. 50).

  55. John C. Slater, untitled memorandum, Slater papers, folder M.I.T. Dept. of Physics #10.

  56. Arthur von Hippel, “New Fields for Electrical Engineering,” Arthur von Hippel papers, Massachusetts Institute of Technology Archives and Special Collections, Cambridge, MA, box 1, folder 44. This was a piece von Hippel prepared for the April 1942 edition of The Tech Engineering News, a periodical published by MIT undergraduates.

  57. Ibid.

  58. “Proposal for An Expanded Program of Materials Research at the Massachusetts Institute of Technology, July 12, 1956,” Slater papers, folder MIT Materials Research #1. The AEC made a similar push within the national laboratories, as discussed in Peter J. Westwick, The National Labs: Science in an American System, 1947–1994 (Cambridge, MA: Harvard University Press, 2003), 257–258.

  59. “Materials Research Program, (ca. 1956),” Slater papers, folder M.I.T. Materials Research #1.

  60. Ibid.

  61. Slater to Kincaid (ref. 50).

  62. John C. Slater to John Kincaid, April 30, 1959, Slater papers, folder Kincaid, John F. #1.

  63. John C. Slater, “On the MIT Materials Center,” ca. 1960, Slater papers, folder Slater, J. C. On the MIT Materials Center.

  64. Scott Knowles and Stuart Leslie have argued that the campuses at industrial laboratories such as Bell, General Motors, and IBM mimicked what architect Eero Saarinen supposed to be the university model of organizing research, namely a linear model, in which basic research fed directly into industrial applications. The rhetoric around MIT’s IDL reveal similar goals by suggesting that placing basic research in physics and chemistry alongside materials engineering fields would help to advance ARPA’s technical aims. Knowles and Leslie, “‘Industrial Versailles’: Eero Saarinen’s Corporate Campuses for GM, IBM, and AT&T,” Isis 92 (2001), 1–33.

  65. ARPA, “Administrative Memo #1,” July 20, 1962, Slater papers, folder M.I.T. Dept. of Physics #138.

  66. Dwight E. Gray and Bruce H. Billings, eds., American Institute of Physics Handbook, 2nd edition (New York: McGraw-Hill, 1963).

  67. Dwight E. Gray, “The New AIP Handbook,” Physics Today 16(7) (1963), 40–42, on 41.

  68. The implication that it was problematic to see physics as classifiable by states of matter was apropos. For instance, John Van Vleck’s 1932 monograph The Theory of Electric and Magnetic Susceptibilities (Oxford: Clarendon Press, 1932) was seen as a classic of solid state physics, even though it dealt mainly with magnetic susceptibilities in gasses. See: Midwinter and Janssen, “Kuhn Losses Regained” (ref. 21).

  69. As in R. A. Ferrell, Y. C. Lee, and M. K. Pal, “Magnetic Quenching of Hyperfine Depolarization of Positive Muons,” Physical Review 118 (1960), 317–319.

  70. Physik der kondensierten Materie 1(2) (1963), frontmatter.

  71. “Important Announcement,” Phys. Rev. 132 (1963), 1.

  72. Brookhaven’s collaborative efforts are outlined in Robert Crease, Making Physics: A Biography of Brookhaven National Laboratory, 1946–1972 (Chicago: University of Chicago Press, 1999).

  73. National Academy of Sciences, National Research Council, Physics: Survey and Outlook (Washington, DC: National Academy of Sciences, 1966), 67.

  74. The footnote was cut from the Pake Report but would resurface in a supplement that furnished more detailed reports on the subfields of physics. National Academy of Sciences, National Research Council, Physics: Survey and Outlook, Reports of the Subfields of Physics (Washington, DC: National Academy of Sciences, 1966), 143.

  75. “NAS-NRC Physics Survey Committee, Solid State Physics and Condensed Matter,” draft, April 1964, Harvey Brooks Papers, Correspondence and Other Papers relating to National Academy of Sciences, 1962–1986, Harvard University Archives, Cambridge, MA (hereafter Brooks papers), box 1, folder NAS Survey Committee March-April 1964.

  76. NAS-NRC, Physics Survey (ref. 73), 67.

  77. Ibid., 68.

  78. Ibid., 67–69.

  79. Brian Pippard, “The Cat and the Cream,” Phys. Today 14(11) (1961), 40–41.

  80. NAS-NRC, Physics Survey (ref. 73), 69.

  81. Ibid.

  82. National Academy of Sciences, National Research Council Physics in Perspective, Volume II, Part A: The Core Subfields of Physics (Washington DC: National Academy of Sciences, 1972).

  83. Phys. kond. Mat. 1(1) (1963), frontmatter; “Authors,” IBM Journal of Research and Development 8 (1964), 361–364, on 361.

  84. NAS-NRC, Physics in Perspective (ref. 82), 460.

  85. Ibid., 458.

  86. Ibid., 459.

  87. Philip W. Anderson, “More Is Different” Science, New Series 177 (1972), 393–396, on 393. For a discussion of Anderson’s arguments for the fundamental nature of condensed matter physics, see Joseph D. Martin, “Fundamental Disputations,” Hist. Stud. Nat. Sci., forthcoming.

  88. American Physical Society Journals, http://journals.aps.org/search, accessed August 13, 2014. The ratio is starker in AIP journals, with 33 instances of “condensed matter” and 4,695 of “solid state.” The difference here is amplified by several factors, including the applied focus of AIP journals during an era that witnessed an explosion in topics such as solid state masers and lasers and the fact that the AIP search algorithm includes the titles of citing articles, which generates a high rate of false positives. American Institute of Physics Journals, http://scitation.aip.org/search, accessed August 13, 2014.

  89. Minutes of the American Physical Society Council Meeting, San Francisco, California, January 22, 1978, American Physical Society meeting minutes and membership list, 1902–2003, Niels Bohr Library and Archives, College Park, MD (hereafter APS minutes).

  90. Minutes of the American Physical Society Council Meeting, Washington, DC, April 23, 1978, APS minutes.

  91. Hopfield, “Whatever Happened” (ref. 32), points to the success of the BCS theory of superconductivity as the theoretical development that encouraged physicists to see solid state problems as general physical problems.

  92. National Academy of Sciences, National Research Council, Industrial Research Laboratories of the United States, Sixth Edition (Washington DC: National Academy of Sciences, 1946).

  93. National Academy of Sciences, National Research Council, Industrial Research Laboratories of the United States, Eleventh Edition (Washington DC: National Academy of Sciences, 1960).

  94. Walter Kohn to George Pake, November 13, 1964, Brooks papers, box 1, folder NAS Survey Committee May-December 1964.

  95. Harvey Brooks to Walter Kohn, March 30, 1964, Brooks papers, box 1, folder NAS Survey Committee March-April 1964.

  96. National Academy of Sciences, National Research Council, Panel on Condensed-Matter Physics, Condensed-Matter Physics: Physics through the 1990s (Washington, DC: National Academy Press, 1986), 3.

  97. Ibid.

  98. NAS-NRC, Physics Survey (ref. 73), 67; NAS-NRC, Physics in Perspective (ref. 82), 142.

  99. See Lillian Hoddeson, Gordon Baym, and Michael Eckert, “The Development of the Quantum Mechanical Electron Theory of Metals, 1926–1933,” in Lillian Hoddeson et al., eds., Out of the Crystal Maze: Chapters from the History of Solid State Physics (Oxford: Oxford University Press, 1992), 88–181 and Christian Joas and Jeremiah James, “Subsequent and Subsidiary? Rethinking the Role of Applications in Establishing Quantum Mechanics,” Hist. Stud. Nat. Sci., forthcoming.

  100. John C. Slater, “The Solid State,” Phys. Today 5(1) (1952), 10–15, on 10.

  101. NAS-NRC, Condensed-Matter Physics (ref. 96).

  102. Ibid., viii.

  103. For an overview of the linear model, see: Benoît Gordon, “The Linear Model of Innovation: The Historical Construction of an Analytical Framework,” Science, Technology, & Human Values 31 (2006), 639–667.

  104. Rustum Roy, “Funding Big Science,” Phys. Today 48(9) (1985), 9.

  105. Matthew N. Eisler, “‘The Ennobling Unity of Science and Technology’: Materials Science and Engineering, the Department of Energy, and the Nanotechnology Enigma,” Minerva 51 (2013), 225–251.

Download references

Acknowledgments

Research was supported by a Grant-in-Aid from the Friends of the Center for History of Physics, American Institute of Physics, and a Dissertation Writing Fellowship from the Philadelphia Area Center for History of Science. Michel Janssen, Babak Ashrafi, Sally Gregory Kohlstedt, Bob Seidel, Andrew Zangwill, and members of the Physical Sciences Working Group at the Philadelphia Area Center for History of Science offered perceptive commentary on early versions of this project. Peter Pesic and Bob Crease improved the paper with keen editorial work and several anonymous reviewers offered suggestions that helped me hone the final version. Thanks also to the archivists and library staff at the American Philosophical Society, Harvard University, the Massachusetts Institute of Technology, the Niels Bohr Library and Archives, and the University of Illinois who made research for this paper possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Martin.

Additional information

Joseph D. Martin is a historian of physics in the History, Philosophy, and Sociology of Science unit of Lyman Briggs College, Michigan State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, J.D. What’s in a Name Change?. Phys. Perspect. 17, 3–32 (2015). https://doi.org/10.1007/s00016-014-0151-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00016-014-0151-7

Keywords

Navigation