Physics in Perspective

, Volume 16, Issue 4, pp 440–460 | Cite as

“Galileo’s Machine”: Late Notes on Free Fall, Projectile Motion, and the Force of Percussion (ca. 1638–1639)

Article

Abstract

My paper focuses upon the problem of determining the nature, establishing the proportionality, and measuring the intensity of the force of percussion of a projected or falling body, as treated in the Sixth Day of Galileo’s Discorsi e dimostrazioni matematiche intorno a due nuove scienze (1638). This fragment was written around 1638–1639 as part of two additional Days of the Discorsi, which Galileo never finished and remained unpublished until 1718. Galileo’s last works on percussion show a significant step towards a generalization of his own views on uniform and accelerated motion that will later lead to the Newtonian principle of inertia. The experiment with two equal weights hanging on a pulley, performed in Arcetri during the same period, is compared with the Paduan 1604–1608 experience of the “water balance.” Both account for more than three decades of inquiries into what Galileo called forza della percossa, which marked the transition from preclassical to classical mechanics.

Keywords

Galileo Galilei machine percussion 

References

  1. 1.
    Jürgen Renn, “Galileo’s Theorem of Equivalence: The Missing Keystone of His Theory of Motion,” in Trevor H. Levere and W. R. Shea, eds., Nature, Experiments, and the Sciences: Essays on Galileo and the History of Science in Honour of Stillman Drake (Dordrecht: Kluwer Publications, 1990), 77–103; Renn, “Proof and Paradoxes: Free Fall and Projectile Motion in Galileo’s Physics,” in Peter Damerow, Gideon Freudenthal, Peter McLaughlin, and Jürgen Renn, eds., Exploring the Limits of Preclassical Mechanics (Berlin: Springer, 1992), 126–268; Renn, Peter Damerow, Simone Rieger, and Domenico Giulini, “Hunting the White Elephant: When and How did Galileo discover the Law of Fall?” Science in Context 13 (2000), 299–419; Renn, ed., Galileo in Context (Cambridge: Cambridge University Press, 2001); Matteo Valleriani, Galileo Engineer (Berlin: Springer, 2010).Google Scholar
  2. 2.
    Gianni Micheli, Le origini del concetto di macchina (Florence: La Nuova Italia, 1995).Google Scholar
  3. 3.
    Thomas B. Settle, “An Experiment in the History of Science,” Science 133 (1961), 19–23.Google Scholar
  4. 4.
    Galileo Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze, attenenti la meccanica e i moti locali (Amsterdam: Elzevier, 1638); Galilei, Opera, ed. A. Favaro, I. Del Lungo, U. Marchesini (Florence: Giunti-Barbèra, 1890–1909; second edition 1939, third edition 1964), 8:323–324; Galilei, Two New Sciences, tr. S. Drake (Madison, WI: University of Wisconsin Press, 1974), 283–284.Google Scholar
  5. 5.
    Galilei, Opera (ref. 4), 8:324–325; Two New Sciences (ref. 4), 284–285.Google Scholar
  6. 6.
    Galilei, Opera (ref. 4), 8:325; Two New Sciences (ref. 4), 285Google Scholar
  7. 7.
    Ernst Mach, Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt (Leipzig: Brockhaus, 1883; second ed. 1908); The Science of Mechanics: A Critical and Historical Account of Its Development, tr. T. J. McCormack (Chicago: The Open Court Publishing Co., 1919); La meccanica nel suo sviluppo storico-critico, tr. A. D’Elia (Turin: Bollati Boringhieri, 1977), 149–178.Google Scholar
  8. 8.
    Galilei, Opera (ref. 4), 8:329; Two New Sciences (ref. 4), 289.Google Scholar
  9. 9.
    Galilei, Opera (ref. 4), 8:331–332; Two New Sciences (ref. 4), 292.Google Scholar
  10. 10.
    Joseph-Louis Lagrange, Mécanique Analytique (Paris: Desaint, 1788; fourth edition 1811), 1:158–159: “Galilée a fait le premier ce pas important [i.e. the law of free fall and the parabolic trajectory of projectiles], & a ouvert par-là une carrière nouvelle & immense à l’avancement de la Méchanique. Ces découvertes sont exposées et développées dans l’ouvrage intitulé: Dialoghi delle Scienze nuove, &c., lequel parut pour la première fois à Leyde en 1637: elles ne procurèrent pas à Galilée, de son vivant, autant de célébrité que celles qu’il avoit faites sur le systême du monde, mais elles font aujourd’hui la partie la plus solide & la plus réelle de la gloire de ce grand homme.” [Galileo made first this important step, through which he opened a new and fruitful pathway for the advancement of mechanics. These discoveries are exposed and developed in the work entitled: Dialoghi delle scienze nuove, &c., which appeared for the first time in Leiden in 1637: they did not give Galileo the same celebrity as those he made about the system of the world, during his life, but nowadays they represent the most solid and significant part of the glory of this great man].Google Scholar
  11. 11.
    Renn, “Galileo’s Theorem” (ref. 1).Google Scholar
  12. 12.
    Pierre Souffrin, “Du mouvement uniforme au mouvement accéléré: une nouvelle lecture du théorème du plan incliné dans les Discorsi de Galilée,” Bollettino di Storia delle Scienze Matematiche 6 (1986), 135; Souffrin, “Sur l’histoire du concept de vitesse d’Aristote à Galilée,” Revue d’histoire des sciences 45 (1992), 231–267; Enrico Giusti, “Il problema della velocità in Galilei,” in Enrico Giusti and Enrico Bellone, ed., Argomenti di storia della scienza: Matematica e Fisica (Pavia: University of Pavia, 1986), 33–64.Google Scholar
  13. 13.
    Galileo Galilei, Opere di Galileo Galilei (Florence: alla Condotta, 1715–1718).Google Scholar
  14. 14.
    Cf. Paolo Galluzzi, Momento: Studi galileiani (Rome: Edizioni dell’Ateneo & Bizzarri, 1979).Google Scholar
  15. 15.
    Galilei, Two New Sciences (ref. 4), 304.Google Scholar
  16. 16.
    Galilei, Opera (ref. 4), 8:344; Two New Sciences (ref. 4), 304.Google Scholar
  17. 17.
    Galilei, Opera (ref. 4), 8:332–333; Two New Sciences (ref. 4), 293–294.Google Scholar
  18. 18.
    Galilei, Opera (ref. 4), 8:333; Two New Sciences (ref. 4), 294.Google Scholar
  19. 19.
    Galilei, Opera (ref. 4), 8:333–334; Two New Sciences (ref. 4), 294.Google Scholar
  20. 20.
    Galilei, Opera (ref. 4), 8:334; Two New Sciences (ref. 4), 294.Google Scholar
  21. 21.
    Galilei, Opera (ref. 4), 8:334–335; Two New Sciences (ref. 4), 294–295.Google Scholar
  22. 22.
    Galilei, Opera (ref. 4), 8:335; Two New Sciences (ref. 4), 295.Google Scholar
  23. 23.
    Galilei, Opera (ref. 4), 8:335–336; Two New Sciences (ref. 4), 296.Google Scholar
  24. 24.
    Galilei, Opera (ref. 4), 8:336–337; Two New Sciences (ref. 4), 296–297.Google Scholar
  25. 25.
    Roberto Vergara Caffarelli, “Il principio di inerzia negli ultimi scritti di Galilei,” Cuadernos Valencianos de Historia de la Medicina y de la Ciencia 10 (2007), 63–85.Google Scholar
  26. 26.
    Thomas B. Settle, “Galilean Science: Essays in the Mechanics and Dynamics of the Discorsi, PhD diss., Cornell University, 1966; Settle, “Galileo’s Use of Experiment as a Tool of Investigation,” in Ernan McMullin, ed., Galileo, Man of Science (New York: Basic Books, 1968), 315–337; Settle, “Galileo’s Experimental Research, preprint (Berlin: Max Planck Institute for the History of Science, 1996).Google Scholar
  27. 27.
    Galilei, Opera (ref. 4), 8:337; Two New Sciences (ref. 4), 297–298.Google Scholar
  28. 28.
    Galilei, Opera (ref. 4), 8:337; Two New Sciences (ref. 4), 298.Google Scholar
  29. 29.
    Galileo Galilei, Opere (Bologna: Evangelista Dozza, 1665–1656).Google Scholar
  30. 30.
    Vincenzo Viviani, Quinto libro degli Elementi d’Euclide (Florence: alla Condotta, 1674–1676).Google Scholar
  31. 31.
    G. B. Baliani, De motu naturali gravium, fluidorum et solidorum (Genoa: Typographia Johannis Mariae Farroni, Nicolai Pesagnij et Petri Francisci Barherij, 1638); Evangelista Torricelli, De motu gravium naturaliter descendentium, et projectorum (1644), in Opere di Evangelista Torricelli, ed. Gino Loria and Giuseppe Vassura (Faenza: Stabilimento Tipo-Litografico Montanari, 1919–1944), vol. 2.Google Scholar
  32. 32.
    Roberto Vergara Caffarelli, Galileo Galilei and Motion: A Reconstruction of 50 Years of Experiments and Discoveries (Berlin: Springer, 2009). See also https://www.youtube.com/watch?v=SGrO4X1Newo&list=UUVfq6BX8XmjCoJJdxRMCpgg, accessed November 20, 2014.
  33. 33.
    Bonaventura Cavalieri, Geometria indivisibilibus continuorum nova quadam ratione promota (Bologna: ex Typographia de Ducijs, 1635).Google Scholar
  34. 34.
    François De Gandt, “Cavalieri’s Indivisibles and Euclid’s Canons,” in Peter Barker and Roger Ariew, eds., Revolution and Continuity: Essays in the History and Philosophy of Early Modern Science (Washington DC: The Catholic University of America Press, 1992).Google Scholar
  35. 35.
    Antoni Malet, From Indivisibles to Infinitesimals: Studies On Seventeenth-Century Mathematizations of Infinitely Small Quantities (Barcelona: Universitat Autònoma de Barcelona, 1996).Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.ImperiaItaly

Personalised recommendations