Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

U–Pb zircon provenance of Triassic sandstones, western Swiss Alps: implications for geotectonic history

  • 147 Accesses

Abstract

The provenance of Triassic Vieux Emosson Formation, autochthonous sediments of the Aiguilles Rouges massif (External Alps), was determined from U–Pb ages of detrital zircons. In addition, two samples of Late Carboniferous sandstones from the Salvan‐Dorénaz basin were included to extend the database of potential source rocks. Overall, age data from the four samples are largely comparable, each with a wide range of ages, indicating similar source rocks. The compositionally and texturally immature strata of the Vieux Emosson Formation suggest a local sediment source. However, not all detrital zircons can be accounted for by the ages of the local polymetamorphic pre-Mesozoic basement, which consists mainly of paragneiss, Ordovician orthogneiss and Late Carboniferous, Variscan-related, magmatic and sedimentary rocks. Ordovician zircons were common in the samples, but Late Carboniferous zircons were only abundant in one sample. Early Cambrian and older zircons were likely recycled from the paragneiss. Recycled zircons primarily represent Cadomian orogenic events (~ 550–650 Ma); older zircons are from eastern Gondwana and West African craton sources. Abundant late Cambrian (~ 500 Ma) and Silurian (~ 425 Ma) zircons likely represent Cadomian rifting and the magmatic events that produced the Ordovician orthogneiss, respectively. Permian zircons were only found in one Triassic sample, and are possibly related to magmatic activity associated with post-Variscan extension. The age data of the detrital zircons in the Triassic Vieux Emosson Formation and in the sandstones from the Late Carboniferous Salvan-Dorénaz basin indirectly dates the source rocks and for the first time confirms Cadomian basement in the Aiguilles Rouges massif. Source rocks for the Silurian, Permian, and to a lesser degree, late Cambrian zircons are not documented in the local basement, and either have been eroded away or are now located to the southeast beneath Penninic nappes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbo, A., Avigad, D., Gerdes, A., & Güngör, T. (2015). Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): paleogeographic constraints from U–Pb–Hf in zircons. Lithos,227, 122–139.

  2. Anthes, G., & Reischmann, T. (2001). Timing of granitoid magmatism in the eastern mid-German crystalline rise. Journal of Geodynamics,31, 119–143.

  3. Augustsson, C., Voigt, T., Bernhart, K., Kreißler, M., Gaupp, R., Gärtner, A., Hofmann, M., & Linnemann, U. (2018). Zircon size-age sorting and source-area effect: The German Triassic Buntsandstein Group. Sedimentary Geology,375, 218–231.

  4. Avanzini, M., & Cavin, L. (2009). A new isochirotherium trackway from the Triassic of Vieux Emosson, SW Switzerland: Stratigraphic implications. Swiss Journal of Geosciences,102, 353–370.

  5. Avigad, D., Rossi, P., Gerdes, A., & Abbo, A. (2018). Cadomian metasediments and Ordovician sandstone from Corsica: Detrital zircon U–Pb–Hf constrains on their provenance and paleogeography. International Journal of Earth Sciences,107, 2803–2818.

  6. Ballèvre, M., Manzotti, P., & Dal Piaz, G. V. (2018). Pre-Alpine (Variscan) inheritance: A key for the location of the future Valaisan Basin (Western Alps). Tectonics,37, 786–817.

  7. Beltrando, M., Rubatto, D., Compagnoni, R., & Lister, G. (2007). Was the Valaisan basin floored by oceanic crust? Evidence of Permian magmatism in the Versoyen Unit (Valaisan domain, NW Alps). Ofioliti,32, 85–99.

  8. Beltrán-Triviño, A., Winkler, W., & Quadt, A. (2013). Tracing Alpine sediment sources through laser ablation U–Pb dating and Hf-isotopes of detrital zircons. Sedimentology,60, 197–224.

  9. Bergomi, M. A., Dal Piaz, G. V., Malusà, M. G., Monopoli, B., & Tunesi, A. (2017). The grand St Bernard-Briançonnais Nappe system and the Paleozoic inheritance of the Western Alps Unraveled by Zircon U–Pb dating. Tectonics,36, 2950–2972.

  10. Bertrand, J. M., Pidgeon, R. T., Leterrier, J., Guillot, F., Gasquet, D., & Gattiglio, M. (2000). SHRIMP and IDTIMS U–Pb zircon ages of the pre-Alpine basement in the Internal Western Alps (Savoy and Piemont). Schweizerische Mineralogische und Petrographische Mitteilungen,80, 225–248.

  11. Boutoux, A., Bellahsen, N., Lacombe, O., Verlaguet, A., & Mouthereau, F. (2014). Inversion of pre-orogenic extensional basins in the external Western Alps: Structure, microstructures and restoration. Journal of Structural Geology,60, 13–29.

  12. Bussy, F., Hernandez, J., & von Raumer, J. (2000). Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Earth and Environmental Science Transactions of The Royal Society of Edinburgh,91, 221–233.

  13. Bussy, F., Péronnet, V., Ulianov, A., Epard, J. L., von Raumer, J., Gutiérrez-Marco, J. C., Rábano, I., & García-Bellido, D. (2011). Ordovician magmatism in the external French Alps: Witness of a peri-Gondwanan active continental margin. In J. C. Gutiérrez-Marco, I. Rabano, & D. García-Bellido (Eds.), Ordovician of the World (pp. 75–82). Madrid: Instituto Geológico y Minero de España.

  14. Bussy, F., & von Raumer, J. (1994). U–Pb geochronology of Palaeozoic magmatic events in the Mont-Blanc Crystalline Massif, Western Alps. Schweizerische Mineralogische und Petrographische Mitteilungen,74, 514–515.

  15. Capuzzo, N., & Bussy, F. (2000). High-precision dating and origin of synsedimentary volcanism in the Late Carboniferous Salvan-Dorénaz basin (Aiguilles-Rouges Massif, Western Alps). Schweizerische Mineralogische und Petrographische Mitteilungen,80, 147–167.

  16. Capuzzo, N., Handler, R., Neubauer, F., & Wetzel, A. (2003). Post-collisional rapid exhumation and erosion during continental sedimentation: the example of the late Variscan Salvan-Dorénaz basin (Western Alps). International Journal of Earth Sciences,92, 364–379.

  17. Capuzzo, N., & Wetzel, A. (2004). Facies and basin architecture of the Late Carboniferous Salvan-Dorénaz continental basin (Western Alps, Switzerland/France). Sedimentology,51, 675–697.

  18. Cavin, L., Avanzini, M., Bernardi, M., Piuz, A., Proz, P. A., Meister, Ch., Boissonnas, J., & Meyer, Ch. A. (2012). New vertebrate trackways from the autochthonous cover of the Aiguilles Rouges Massif and reevaluation of the dinosaur record in the Valais (Triassic, SW Switzerland). Swiss Journal of Palaeontology,31, 317–324.

  19. Collet, L.W., Lombard, A, Oulianoff, N., Paréjas, E., & Reinhard, M. (1951). Geological Atlas of Switzerland 1:25000, No. 24 (Finhaut). Wabern: Federal Office of Topography. www.geo.admin.ch.

  20. Corfu, F., Hanchar, J. M., Hoskin, P. W., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry,53, 469–500.

  21. Couzinié, S., Laurent, O., Chelle-Michou, C., Bouilhol, P., Paquette, J. L., Gannoun, A. M., & Moyen, J. F. (2019). Detrital zircon U–Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the north Gondwana margin. Precambrian Research, 324, 269–284.

  22. de Graciansky, P. C., Roberts, D., & Tricart, P. (2010). The Western Alps from rift to passive margin to orogenic belt: an integrated geosciences overview. Developments in Earth surface processes (Vol. 14). Amsterdam: Elsevier.

  23. Dobmeier, C., Pfeifer, H. R., & von Raumer, J. F. (1999). The newly defined” Greenstone Unit’’ of the Aiguilles Rouges massif (western Alps): remnant of an Early Palaeozoic oceanic island-arc? Schweizerische Mineralogische und Petrographische Mitteilungen,79, 263–276.

  24. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry,53, 277–303.

  25. Franke, W. (2000) The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution, In Franke, W., Haak, V., Oncken, O., & Tanner, D. (Eds.) Orogenic processes: Quantification and modelling in the Variscan Belt: Geological Society of London, Special Publication, 179, 35–61.

  26. Franke, W., Cocks, L. R. M., & Torsvik, T. H. (2017). The Palaeozoic Variscan oceans revisited. Gondwana Research,48, 257–284.

  27. Frey, M., Desmons, J., & Neubauer, F. (1999). Metamorphic maps of the Alps, Schweizerische. Mineralogische und Petrographische Mitteilungen,79, 1–230.

  28. Froitzheim, N. (2001). Origin of the Monte Rosa nappe in the Pennine Alps—A new working hypothesis. Geological Society of America Bulletin,113, 604–614.

  29. Garfunkel, Z. (2015). The relations between Gondwana and the adjacent peripheral Cadomian domain—Constrains on the origin, history, and paleogeography of the peripheral domain. Gondwana Research,28, 1257–1281.

  30. Gebauer, D. (1993). The pre-Alpine evolution of the continental crust of the Central Alps—an overview. In J. F. von Raumer & F. Neubauer (Eds.), Pre-Mesozoic geology in the Alps (pp. 93–117). Berlin: Springer.

  31. Gehrels, G. (2011). Detrital zircon U–Pb geochronology: Current methods and new opportunities. In C. Busy & A. Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 45–62). Chichester: Wiley-Blackwell.

  32. Gerdes, A., & Zeh, A. (2006). Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters,249, 47–61.

  33. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. (Eds.). (2012). The geologic time scale 2012. Amsterdam: Elsevier.

  34. Grosjean, D. B., Meisser, N., May-Leresche, S., Ulianov, A., & Vonlanthen, P. (2018). The Morcles microgranite (Aiguilles Rouges, Swiss Alps): geochronological and geochemical evidences for a common origin with the Vallorcine intrusion. Swiss Journal of Geosciences,111, 35–49.

  35. Klein, H., Wizevich, M. C., Thüring, B., Marty, D., Thüring, S., Falkingham, P., & Meyer, Ch. A. (2016). Triassic chirotheriid footprints from the Swiss Alps: ichnotaxonomy and depositional environment (Cantons Wallis & Glarus). Swiss Journal of Palaeontology,135, 295–314.

  36. Kroner, U., & Romer, R. L. (2013). Two plates—Many subduction zones: the Variscan orogeny reconsidered. Gondwana Research,24, 298–329.

  37. Kunz, B. E., Manzotti, P., von Niederhäusern, B., Engi, M., Darling, J. R., Giuntoli, F., & Lanari, P. (2018). Permian high-temperature metamorphism in the Western Alps (NW Italy). International Journal of Earth Sciences,107, 203–229.

  38. Linnemann, U., D’Lemos, R., Drost, K., Jeffries, T., Gerdes, A., Romer, R. L., Samson, S. D., & Strachan, R. A. (2008). The Cadomian Orogeny. In T. McCann (Ed.), The Geology of Central Europe (pp. 103–154). London: The Geological Society of London.

  39. Linnemann, U., Gerdes, A., Drost, K., & Buschmann, B. (2007). The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA–ICP–MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In U. Linnemann, R.D. Nance, P. Kraft, & G. Zulauf (Eds.), The Evolution of the Rheic Ocean: From AvalonianCadomian Active Margin to AlleghenianVariscan Collision. Geological Society of America Special Paper 423 (pp. 61–96). Boulder: Geological Society of America.

  40. Linnemann, U., Gerdes, A., Hofmann, M., & Marko, L. (2014). The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Research,244, 236–278.

  41. Ludwig, K.R. (2001). Users Manual for Isoplot/Ex rev. 2.49: Berkeley Geochronology Center Special Publication, 1a, 1-56.

  42. Matte, P. (2001). The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova,13, 122–128.

  43. Meinhold, G., Morton, A. C., & Avigad, D. (2013). New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Research,23, 661–665.

  44. Meisser, N. (2012). La mine´ralogie de l’uranium dans le massif des Aiguilles Rouges (1 carte + 183 p.). Wabern: La mine´ralogie de l’uranium dans le massif des Aiguilles Rouges (1 carte + 183 p.).

  45. Ménot, R. P., Peucat, J. J., Scarenzi, D., & Piboule, M. (1988). 496 My age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): evidence of a Lower Paleozoic oceanization. Earth and Planetary Science Letters,88, 82–92.

  46. Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., Strachan, R. A., & Woodcock, N. H. (2010). Evolution of the Rheic ocean. Gondwana Research,17, 194–222.

  47. Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., Strachan, R. A., & Woodcock, N. H. (2012). A brief history of the Rheic Ocean. Geoscience Frontiers,3, 125–135.

  48. Paquette, J. L., Menot, R. P., & Peucat, J. J. (1989). REE, Sm–Nd and U–Pb zircon study of eclogites from the Alpine External Massifs (Western Alps): evidence for crustal contamination. Earth and Planetary Science Letters,96, 181–198.

  49. Potrel, A., Peucat, J. J., Fanning, C. M., Auvray, B., Burg, J. P., & Caruba, C. (1996). 3.5 Ga old terranes in the West African craton, Mauritania. Journal of the Geological Society,153, 507–510.

  50. Ring, U., Collins, A. S., & Kassem, O. K. (2005). U–Pb SHRIMP data on the crystallization age of the Gran Paradiso augengneiss, Italian Western Alps: Further evidence for Permian magmatic activity in the Alps during break-up of Pangea. Eclogae Geologicae Helvetiae,98, 363–370.

  51. Robardet, M. (2003). The Armorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeography, Palaeoclimatology, Palaeoecology,195, 125–148.

  52. Romer, R. L., & Kroner, U. (2019). First direct evidence for a contiguous Gondwana shelf to the south of the Rheic Ocean. Geology, 47, 767–770. https://doi.org/10.1130/G46255.1.

  53. Rösel, D., Boger, S. D., Möller, A., Gaitzsch, B., Barth, M., Oalmann, J., & Zack, T. (2014). Indo-Antarctic derived detritus on the northern margin of Gondwana: evidence for continental-scale sediment transport. Terra Nova,26, 64–71.

  54. Schaltegger, U. (1993). The evolution of the polymetamorphic basement in the Central Alps unravelled by precise U−Pb zircon dating. Contributions to Mineralogy and Petrology,113, 466–478.

  55. Schaltegger, U. (1994). Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating: a review: The pre-Alpine crustal evolution of the Aar-, Gotthard-and Tavetsch massifs. Schweizerische Mineralogische und Petrographische Mitteilungen,74, 41–51.

  56. Schaltegger, U., Abrecht, J., & Corfu, F. (2003). The Ordovician orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen,83, 183–239.

  57. Schaltegger, U., & Corfu, F. (1995). Late Variscan “Basin and Range” magmatism and tectonics in the Central Alps: evidence from U–Pb geochronology. Geodinamica Acta,8, 82–98.

  58. Schaltegger, U., & Gebauer, D. (1999). Pre-Alpine geochronology of the Central, Western and Southern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen,79, 79–87.

  59. Scheck-Wenderoth, M., Krzywiec, P., Zühlke, R., Maystrenko, Y., & Froitzheim, N. (2008). Permian to Cretaceous tectonics. In T. McCann (Ed.), The geology of Central Europe (Vol. 2, pp. 999–1030). London: The Geological Society of London.

  60. Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., & Kissling, E. (1996). Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics,15, 1036–1064.

  61. Schulz, B., & von Raumer, J. F. (2011). Discovery of Ordovician-Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif. Swiss Journal of Geosciences,104, 67–79.

  62. Schuster, R., & Stüwe, K. (2008). Permian metamorphic event in the Alps. Geology,36, 603–606.

  63. Siegesmund, S., Oriolo, S., Heinrichs, T., Basei, M. A. S., Nolte, N., Hüttenrauch, F., & Schulz, B. (2018). Provenance of Austroalpine basement metasediments: tightening up Early Palaeozoic connections between peri-Gondwanan domains of central Europe and Northern Africa. International Journal of Earth Sciences,107, 2293–2315.

  64. Simon‐Coinçon, R. (1999). Palaeolandscape Reconstruction of the South‐Western Massif Central (France). In M. Thiry & R. Simon‐Coinçon (Eds.), Palaeoweathering, Palaeosurfaces and Related Continental Deposits, vol. 27 (pp. 223–243). International Association of Sedimentologists, Oxford: Blackwell Science.

  65. Sircombe, K. N. (2004). AGE DISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Computers & Geosciences,30, 21–31.

  66. Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters,26, 207–221.

  67. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters,19, 17–33.

  68. Stampfli, G. M., Borel, G. D., Marchant, R., & Mosar, J. (2002). Western Alps geological constraints on western Tethyan reconstructions. Journal of the Virtual Explorer,7, 75–104.

  69. Stampfli, G. M., & Hochard, C. (2009). Plate tectonics of the Alpine realm. In J. B. Murphy, J. D. Keppie, & A. J. Hynes (Eds.), Ancient orogens and modern analogues (Vol. 327, pp. 89–111). London: Geological Society, Special Publications. https://doi.org/10.1144/SP327.6.

  70. Stampfli, G. M., Hochard, C., Vérard, C., & Wilhem, C. (2013). The formation of Pangea. Tectonophysics,593, 1–19.

  71. Stampfli, G. M., von Raumer, J., & Wilhem, C. (2011). The distribution of Gondwana-derived terranes in the Early Palaeozoic. In J. C. Gutiérrez-Marco, I. Rabano, & D. García-Bellido (Eds.), Ordovician of the World (pp. 567–574). Madrid: Instituto Geológico y Minero de España.

  72. Stephan, T., Kroner, U., & Romer, R. L. (2019a). The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geological Magazine,156, 281–307.

  73. Stephan, T., Kroner, U., Romer, R. L., & Rösel, D. (2019b). From a bipartite Gondwana shelf to an arcuate Variscan belt: The early Paleozoic evolution of northern Peri-Gondwana. Earth-Science Reviews,192, 491–512.

  74. Thomas, W. A. (2011). Detrital-zircon geochronology and sedimentary provenance. Lithosphere,3, 304–308.

  75. von Raumer, J. F. (1969). Stilpnomelan als alpinmetamorphes Produkt im Mont-Blanc-Granit. Contributions of Mineralogy and Petrology,21, 257–271.

  76. von Raumer, J. F. (1974). Zur Metamorphose amphibolititscher Gesteine im Altkristallin des Mon-Blanc- und Aiguilles-Rouges-Massivs. Schweizerische Mineralogische und Petrographische Mitteilungen,54, 471–488.

  77. von Raumer, J. F. (1998). The Palaeozoic evolution in the Alps: from Gondwana to Pangea. Geologische Rundschau,87, 407–435.

  78. von Raumer, J., Abrecht, J., Bussy, F., Lombardo, B., Menot, R. P., & Schaltegger, U. (1999). The Paleozoic metamorphic evolution of the Alpine external massifs. Schweizerische Mineralogische und Petrographische Mitteilungen,79, 5–22.

  79. von Raumer, J. F., & Bussy, F. (2004). Mont Blanc and Aiguilles Rouges: Geology of their Polymetamorphic basement (External Massifs, Western Alps, France-Switzerland). Mémoires de Géologie (Lausanne),42, 1–203.

  80. von Raumer, J. F., Bussy, F., Schaltegger, U., Schulz, B., & Stampfli, G. M. (2013). Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. Geological Society of America Bulletin,125, 89–108.

  81. von Raumer, J. F., Bussy, F., & Stampfli, G. M. (2009). The Variscan evolution in the External massifs of the Alps and place in their Variscan framework. Comptes Rendus Geoscience,341, 239–252.

  82. von Raumer, J. F., & Stampfli, G. (2008). The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics,461, 9–20.

  83. von Raumer, J. F., Stampfli, G., Borel, G., & Bussy, F. (2002). Organization of pre-Variscan basement areas at the north-Gondwanan margin. International Journal of Earth Sciences,91, 35–52.

  84. Wizevich, M. C., Ahern, J., & Meyer, Ch A. (2019). The Triassic of southwestern Switzerland—Marine or not marine, that is the question! Palaeogeography, Palaeoclimatology, Palaeoecology,514, 577–592.

  85. Žák, J., & Sláma, J. (2018). How far did the Cadomian ʽterranesʼ travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology. International Geology Review,60, 319–338.

  86. Ziegler, P. A. (1982). Triassic rifts and facies patterns in Western and Central Europe. Geologische Rundschau,71, 747–772.

Download references

Acknowledgements

We thank Basil Thüring, Sylvan Thüring, Henrik Klein, Petra Eggenschwiler, Sylvia Schmutz, and Justin Ahern for assistance in the field. Andreas Wetzel provided MW support at the University of Basel during summer visits. Funding for MW was provided by Connecticut State Universities–AAUP research grants. The Natural History Museum Basel provided financial support for field work with its “Fonds für Lehre & Forschung”. Armin Zeh is thanked for his help with the U–Pb LA-ICP-MS zircon dating at the Institute of Geowissenschaften at the Goethe University of Frankfurt am Main. Finally, we thank J.F. von Raumer and D. Bussien Grosjean for their constructive reviews as well as Editor W. Winkler, for his helpful handling of the manuscript.

Author information

Correspondence to Michael C. Wizevich.

Additional information

Editorial Handling: W. Winkler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 162 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wizevich, M.C., Meyer, C.A., Linnemann, U. et al. U–Pb zircon provenance of Triassic sandstones, western Swiss Alps: implications for geotectonic history. Swiss J Geosci 112, 419–434 (2019). https://doi.org/10.1007/s00015-019-00342-5

Download citation

Keywords

  • Detrital zircon
  • U–Pb dating
  • Vieux Emosson Formation
  • Aiguilles Rouges massif
  • Triassic
  • Sediment provenance