Swiss Journal of Geosciences

, Volume 111, Issue 1–2, pp 353–371 | Cite as

Subaqueous landslide-triggered tsunami hazard for Lake Zurich, Switzerland

  • Michael Strupler
  • Michael Hilbe
  • Katrina Kremer
  • Laurentiu Danciu
  • Flavio S. Anselmetti
  • Michael Strasser
  • Stefan Wiemer


Subaqueous landslides can induce potentially damaging tsunamis. Tsunamis are not restricted to the marine environment, but have also been documented on lakes in Switzerland and worldwide. For Lake Zurich (central Switzerland), previous work documented multiple, assumedly earthquake-triggered landslides. However, no information about past tsunamis is available for Lake Zurich. In a back-analysis, we model tsunami scenarios as a consequence of the earthquake-triggered landslides in the past. Furthermore, on the basis of a recent map of the earthquake-triggered subaqueous landslide hazard, we present results of a tsunami hazard assessment. The subaqueous landslide progression, wave propagation and inundation are calculated with a combination of open source codes. Although no historic evidence of past tsunamis has been documented for Lake Zurich, a tsunami hazard exists. However, only earthquakes with long return periods are assumed to cause considerable tsunamis. An earthquake with an exceedance probability of 0.5% in 50 years (corresponding to an earthquake with a return period of 9975 years) is assumed to cause tsunamigenic landslides on most lateral slopes of Lake Zurich. A hypothetical tsunami for such an event would create damage especially along the shores of the central basin of Lake Zurich with estimated peak flow depths of up to ~ 4.6 m. Our results suggest that for an earthquake with an exceedance probability of 10% in 50 years (i.e., mean return period of 475 years), no considerable tsunami hazard is estimated. Even for a worst-case scenario, the cities of Zurich and Rapperswil, located at the northern and southern ends of the lake, respectively, are assumed to experience very little damage. The presented first-order results of estimated wave heights and inundated zones provide valuable information on tsunami-prone areas that can be used for further investigations and mitigation measures.


Subaqueous mass movements Tsunami hazard assessment Tsunami modelling Lake Zurich 



This work was supported by the Swiss National Foundation Grant no. 133481. K. K. is currently funded by the Swiss National Science Foundation (Project number PMPDP2_171318). Swisstopo geodata was reproduced with the authorisation (JA100120). We would like to thank the developers of MassMov2D and GeoClaw for providing the open-source codes.

Supplementary material

15_2018_308_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1576 kb)


  1. AWEL (2016) Wasserstand Zürichsee—Oberrieden 2010-2016. Accessed 16 Apr 2017
  2. Beguería, S., Van Asch, T. W. J., Malet, J.-P., & Gröndahl, S. (2009). A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth Systems Sciences, 9, 1897–1909. Scholar
  3. Berger, M. J., George, D. L., LeVeque, R. J., & Mandli, K. T. (2011). The GeoClaw software for depth-averaged flows with adaptive refinement. Advances in Water Resources, 34, 1195–1206. Scholar
  4. Bondevik, S., Løvholt, F., Harbitz, C., Mangerud, J., Dawson, A., & Svendsen, J. I. (2005). The storegga slide tsunami—comparing field observations with numerical simulations. Marine and Petroleum Geology, 22, 195–208. Scholar
  5. Bornhold, B. D., & Thomson, R. E. (2012). Tsunami hazard assessment related to slope failures in coastal waters. In J. J. Clague & D. Stead (Eds.), Landslides (pp. 108–120). Cambridge: Cambridge University.CrossRefGoogle Scholar
  6. Bretschneider CL and Wybro PG (1977) Tsunami inundation prediction. In: Proceedings of the Fifteenth coastal Engineering Conference. Am. Soc. of Civil Engineers, New York, p 1006–1024Google Scholar
  7. De Blasio, F. V. (2011). Subaqueous Landslides. Introduction to the Physics of Landslides (pp. 295–351). Netherlands: Springer.CrossRefGoogle Scholar
  8. Elverhoi, A., Breien, H., De Blasio, F. V., Harbitz, C. B., & Pagliardi, M. (2010). Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit. Ocean Dynamics, 60, 1027–1046. Scholar
  9. Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., & Kulikov, E. A. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology, 215, 45–57. Scholar
  10. Geilinger-Schnorf U (1993) 175 Jahre Chemie Uetikon: Die Geschichte der Chemischen Fabrik Uetikon von 1818 bis 1993. UBV Uetikon Betriebs- und Verwaltungs _AG, UetikonGoogle Scholar
  11. Grilli, S. T., Taylor, O. D. S., Baxter, C. D. P., & Maretzki, S. (2009). A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Marine Geology, 264, 74–97. Scholar
  12. Harbitz, C. B. (1992). Model simulations of tsunamis generated by the Storegga Slides. Marine Geology, 105, 1–21. Scholar
  13. Heim, A. (1876). Bericht und Expertengutachten über die im Februar und September 1875 in Horgen am Zürichsee vorgekommenen Rutschungen. Die Eisenbahn, 4, 191–196.Google Scholar
  14. Henriod S, Douard R, Ullmann D and Humbel R (2016) Statistik der Bevölkerung und Haushalte (STATPOP). Bundesamt für Statistik (BFS), Bern. BFS-Nummer: be-d-00.03-13-STATPOP-v16Google Scholar
  15. Hilbe, M., & Anselmetti, F. S. (2015). Mass Movement-Induced Tsunami Hazard on Perialpine Lake Lucerne (Switzerland): scenarios and Numerical Experiments. Pure and Applied Geophysics, 172, 545–568. Scholar
  16. Hill, J., Collins, G. S., Avdis, A., Kramer, S. C., & Piggott, M. D. (2014). How does multiscale modelling and inclusion of realistic palaeobathymetry affect numerical simulation of the Storegga Slide tsunami? Ocean Modelling, 83, 11–25. Scholar
  17. Intergovernmental Oceanographic Commission (2016) Tsunami Glossary. IOC Technical Series 85. UNESCO, ParisGoogle Scholar
  18. Jiang, L., & Leblond, P. H. (1992). The Coupling of A Submarine Slide and The Surface. Journal of Geophysical Research, 97, 12731–12744.CrossRefGoogle Scholar
  19. Kaiser, G., Scheele, L., Kortenhaus, A., Løvholt, F., Römer, H., & Leschka, S. (2011). The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Natural Hazards and Earth Systems Sciences, 11, 2521–2540. Scholar
  20. Keller, O., & Krayss, E. (2005). Der Rhein-Linth-Gletscher im letzten Hochglazial. 1. Teil: einleitung, Aufbau und Abschmelzen des Rhein-Linth-Gletschers im Oberen Würm. Verteljahrsschrift der Naturforschenden Gesellschaft Zürich, 150, 19–32.Google Scholar
  21. Kelts K (1978) Geological and sedimentary evolution of Lakes Zurich and Zug, Switzerland. ETH Zurich, PhD Thesis, Nr.6146Google Scholar
  22. Kelts, K., & Hsü, K. J. (1980). Resedimented facies of 1875 Horgen slumps in Lake Zurich and a process model of longitudinal transport of turbidity currents. Eclogae Geologicae Helvetiae, 73, 271–281.Google Scholar
  23. Kremer, K., Hilbe, M., Simpson, G., Decrouy, L., Wildi, W., & Girardclos, S. (2015). Reconstructing 4000 years of mass movement and tsunami history in a deep peri-Alpine lake (Lake Geneva, France-Switzerland). Sedimentology. Scholar
  24. Kremer, K., Marillier, F., Hilbe, M., Simpson, G., Dupuy, D., Yrro, B. J. F., et al. (2014). Lake dwellers occupation gap in Lake Geneva (France–Switzerland) possibly explained by an earthquake–mass movement–tsunami event during Early Bronze Age. Earth and Planetary Science Letters, 385, 28–39. Scholar
  25. Kremer K, Simpson G, Girardclos S (2012) Giant Lake Geneva tsunami in ad 563. 5:2011–2013.Google Scholar
  26. Kuen E (1999) Der Uferabbruch im Kusen. In: Küsnachter Jahrheft. Ortsgeschichtliche Kommission der Kulturellen Vereinigung Küsnacht, p 44–50Google Scholar
  27. Lee H, Schwab W, Booth J (1993) Submarine landslides: an introduction. In: Schwab WC, Lee HJ, Twichell DC (eds) Submarine landslides: selected studies in the US exclusive economic zone. US Geological Survey Bulletin 2002, p 1–11Google Scholar
  28. Locat, J., & Lee, H. J. (2002). Submarine landslides: advances and challenges. Canadian Geotechnical Journal, 39, 193–212. Scholar
  29. López-Venegas, A. M., ten Brink, U. S., & Geist, E. L. (2008). Submarine landslide as the source for the October 11, 1918 Mona Passage tsunami: observations and modeling. Marine Geology, 254, 35–46. Scholar
  30. Løvholt, F., Harbitz, C. B., & Haugen, K. B. (2005). A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Marine and Petroleum Geology, 22, 219–231. Scholar
  31. Mei, C. C., & Liu, K.-F. F. (1987). A Bingham-plastic model for A muddy seabed under long waves. Journal of Geophysical Research, 92, 14581–14594. Scholar
  32. Moernaut, J., & De Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: results from morphometric and seismostratigraphic analysis. Marine Geology, 285, 29–45. Scholar
  33. Mohrig, D., Whipple, K. X., Hondzo, M., Ellis, C., & Parker, G. (1998). Hydroplaning of subaqueous debris flows. Bulletin of the Geological Society of America, 110, 387–394.<0387:HOSDF>2.3.CO;2.CrossRefGoogle Scholar
  34. Müller, F., Kaenel, G., & Lüscher, G. (1999). Eisenzeit = Age du Fer. Die Schweiz vom Paläolithikum bis zum frühen Mittelalter. SPM IV. Basel: Schweizerische Gesellschaft für Ur- und Frühgeschichte.Google Scholar
  35. Nipkow F (1927) Über das Verhalten der Skelette planktischer Kieselalagen im geschichteten Tifenschlamm des Zürich- und Baldeggersees. ETH Zurich, PhD Thesis, Nr. 455Google Scholar
  36. Pararas-Carayannis, G. (1988). Risk assessment of the tsunami hazard. In M. I. El-Sabh & T. S. Murty (Eds.), Natural and man-made hazards (pp. 183–191). Dordrecht: Springer.CrossRefGoogle Scholar
  37. Pelinovsky, E. N., & Mazova, R. K. (1992). Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Natural Hazards, 6, 227–249. Scholar
  38. Primas M (1981) Urgeschichte des Zürichseegebietes im Überblick: Von der Steinzeit bis zur Früheisenzeit. In: Degen R (ed) Zürcher Seeufersiedlungen—Von der Pfahlbau-Romantik zur modernen archäologischen Forschung (pp. 5–18). Basel: Schwabe.Google Scholar
  39. Reusch, A., Moernaut, J., Anselmetti, F. S., & Strasser, M. (2016). Sediment mobilization deposits from episodic subsurface fluid flow-A new tool to reveal long-term earthquake records? Geology, 44, 243–246. Scholar
  40. Ruoff U (1981) Die Ufersiedlungen an Zürich- und Greifensee. In: Degen R (ed) Zürcher Seeufersiedlungen—Von der Pfahlbau-Romantik zur modernen archäologischen Forschung (pp. 19–61). Basel: Schwabe.Google Scholar
  41. Schlund RA (1972) Zürichsee: topogr. Plan 1:5000. Meliorations- und Vermessungsamt des Kt. Zürich.Google Scholar
  42. Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., & Ward, S. N. (2002). Prehistoric earthquake history revealed by lacustrine slump deposits. Geology, 30, 1131–1134.<1131:PEHRBL>2.0.CO;2.CrossRefGoogle Scholar
  43. Shimazu, H. (2016). Relationships between coastal and fluvial geomorphology and inundation processes of the tsunami flow caused by the 2011 off the pacific coast of tohoku earthquake. Natural disaster and coastal geomorphology (pp. 65–92). Cham: Springer.Google Scholar
  44. Siegenthaler, C., Finger, W., Kelts, K., & Wang, S. (1987). Earthquake and seiche deposits in Lake Lucerne, Switzerland. Eclogae Geologicae Helvetiae, 80, 241–260.Google Scholar
  45. Skvortsov, A., & Bornhold, B. (2007). Numerical simulation of the landslide-generated tsunami in Kitimat Arm, British Columbia, Canada, 27 April 1975. Journal of Geophysical Research: Earth Surface, 112, 1–12. Scholar
  46. Strasser, M., Monecke, K., Schnellmann, M., & Anselmetti, F. S. (2013). Lake sediments as natural seismographs: a compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology, 60, 319–341. Scholar
  47. Strasser, M., Schindler, C., & Anselmetti, F. S. (2008). Late Pleistocene earthquake-triggered moraine dam failure and outburst of Lake Zurich, Switzerland. Journal of Geophysical Research: Earth Surface, 113, 1–16. Scholar
  48. Strupler, M., Danciu, L., Hilbe, M., Kremer, K., Anselmetti, F. S., Strasser, M., et al. (2018). A subaqueous hazard map for earthquake-triggered landslides in Lake Zurich, Switzerland. Natural Hazards, 90, 51–78. Scholar
  49. Strupler, M., Hilbe, M., Anselmetti, F. S., Kopf, A. J., Fleischmann, T., & Strasser, M. (2017). Probabilistic stability evaluation and seismic triggering scenarios of submerged slopes in Lake Zurich (Switzerland). Geo-Marine Letters, 37, 241–258. Scholar
  50. Strupler, M., Hilbe, M., Anselmetti, F. S., & Strasser, M. (2015). Das neue Tiefenmodell des Zürichsees: hochauflösende Darstellung der geomorphodynamischen Ereignisse im tiefen Seebecken. Swiss Bulletin für Angewandte Geologie, 20, 71–83.Google Scholar
  51. Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., et al. (2002). The slump origin of the 1998 Papua New Guinea Tsunami. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 458, 763–789. Scholar
  52. Tappin, D. R. (2017). The generation of tsunamis. Encyclopedia of maritime and offshore engineering (pp. 1–10). Chichester: Wiley.Google Scholar
  53. Tappin, D. R., Matsumoto, T., Watts, P., Satake, K., McMurtry, G. M., Matsuyama, M., et al. (1999). Sediment slump likely caused 1998 papua new Guinea Tsunami. Eos (Washington DC). Scholar
  54. Tappin, D. R., Watts, P., & Grilli, S. T. (2008). The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards and Earth Systems Sciences, 8, 243–266.CrossRefGoogle Scholar
  55. Tappin, D. R., Watts, P., McMurtry, G. M., Lafoy, Y., & Matsumoto, T. (2001). The Sissano, Papua New Guinea tsunami of July 1998—Offshore evidence on the source mechanism. Marine Geology, 175, 1–23. Scholar
  56. ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264, 65–73. Scholar
  57. Tinti, S., & Bortolucci, E. (2000). Energy of water waves induced by submarine landslides. Pure and Applied Geophysics, 157, 281–318. Scholar
  58. Wang, X., Mountjoy, J., Power, W. L., & Lane, E. M. (2016). Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore Central New Zealand. Cham: Springer.CrossRefGoogle Scholar
  59. Ward, S. N. (2011). Tsunami. In H. K. Gupta (Ed.), Encyclopedia of solid earth geophysics (pp. 1473–1493). Dordrecht: Springer.CrossRefGoogle Scholar
  60. Watts, P. (1998). Wavemaker curves for tsunamis generated. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 127–137.CrossRefGoogle Scholar
  61. Wells, P. S. (2002). The iron age. In S. Milisauskas (Ed.), European prehistory: A survey (pp. 335–383). Boston: Springer.CrossRefGoogle Scholar
  62. Wesseling, C. G., Karssenberg, D.-J., Burrough, P., & Van Deursen, W. P. A. (1996). Integrating dynamic environmental models in GIS: the development of a dynamic modelling language. Trans GIS, 1, 40–48. Scholar
  63. Wiemer S, Danciu L, Edwards B, Marti M, Fäh D, Hiemer S, Wössner J, Cauzzi C, Kästli P and Kremer K (2016) Seismic hazard model 2015 for Switzerland (pp. 1–163). Zurich: Swiss Seismological Service (SED) at ETH Zurich.Google Scholar
  64. Wild, D. (2009). Lindenhof, Sihl und Zürichsee-Fragen zu Geologie und Topographie zwischen Spätlatène und Frühmittelalter. Zürich in der Spätlatène- und frühen Kaiserzeit—Vom keltischen Oppidum zum römischen Vicus Turicum (pp. 14–17). Zürich: Hochbaudepartment der Stadt Zürich.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Geological Institute, ETH ZurichZurichSwitzerland
  2. 2.Institute of Geological Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.Swiss Seismological ServiceETH ZurichZurichSwitzerland
  4. 4.Institute of GeologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations