Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 1–2, pp 295–303 | Cite as

10Be surface exposure dating of the last deglaciation in the Aare Valley, Switzerland

  • Lorenz Wüthrich
  • Ezequiel Garcia Morabito
  • Jana Zech
  • Mareike Trauerstein
  • Heinz Veit
  • Christian Gnägi
  • Silke Merchel
  • Andreas Scharf
  • Georg Rugel
  • Marcus Christl
  • Roland Zech
Article
  • 241 Downloads

Abstract

The combined Rhone and Aare Glaciers presumably reached their last glacial maximum (LGM) extent on the Swiss Plateau prior to 24 ka. Two well-preserved, less extensive moraine stades, the Gurten and Bern Stade, document the last deglaciation of the Aare Valley, yet age constraints are very scarce. In order to establish a more robust chronology for the glacial/deglacial history of the Aare Valley, we applied 10Be surface exposure dating on eleven boulders from the Gurten and Bern Stade. Several exposure ages are of Holocene age and likely document post-depositional processes, including boulder toppling and quarrying. The remaining exposure ages, however yield oldest ages of 20.7 ± 2.2 ka for the Gurten Stade and 19.0 ± 2.0 ka for the Bern Stade. Our results are in good agreement with published chronologies from other sites in the Alps.

Keywords

Pleistocene Cosmogenic nuclides Exposure dating Alpine foreland 

Notes

Acknowledgements

We thank Melissa Graber and Claudio Brändli for help in the field and laboratory and the Amt für Umwelt, Bern for the sampling permission. Parts of this research were carried out at the Ion Beam Centre (IBC) at the Helmholtz-Zentrum Dresden-Rossendorf e. V., a member of the Helmholtz Association. We would like to thank the DREAMS operator team for their assistance with AMS-measurements. Régis Braucher and Gilles Rixhon are thanked for theit reviews, which improved the paper significantly.

References

  1. Akçar, N., Ivy-Ochs, S., Kubik, P. W., & Schlüchter, C. (2011). Post-depositional impacts on ‘Findlinge’ (erratic boulders) and their implications for surface-exposure dating. Swiss Journal of Geosciences, 104, 445–453.  https://doi.org/10.1007/s00015-011-0088-7.CrossRefGoogle Scholar
  2. Akhmadaliev, S., Heller, R., Hanf, D., Rugel, G., & Merchel, S. (2013). The new 6 MV AMS-facility DREAMS at Dresden. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 294, 5–10.  https://doi.org/10.1016/j.nimb.2012.01.053.CrossRefGoogle Scholar
  3. Becker, P., Seguinot, J., Jouvet, G., & Funk, M. (2016). Last glacial maximum precipitation pattern in the Alps inferred from glacier modelling. Geographica Helvetica, 71, 173–187.  https://doi.org/10.5194/gh-71-173-2016.CrossRefGoogle Scholar
  4. Bini, A., Buonchristiani, J.-F., Couterand, S., Ellwanger, D., Felber, M., Florineth, D., et al. (2009). Die Schweiz während des letzteiszeitlichen Maximums (LGM). Wabern: Bundesamt für Landestopografie.Google Scholar
  5. Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., et al. (2016). Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology, 31, 188–198.  https://doi.org/10.1016/j.quageo.2015.01.009.CrossRefGoogle Scholar
  6. Braucher, R., Brown, E. T., Bourlès, D. L., & Colin, F. (2003). In situ produced 10Be measurements at great depths: Implications for production rates by fast muons. Earth and Planetary Science Letters, 211, 251–258.  https://doi.org/10.1016/S0012-821X(03)00205-X.CrossRefGoogle Scholar
  7. Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J., Alfimov, V., et al. (2013). The ETH Zurich AMS facilities: Performance parameters and reference materials. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 294, 29–38.  https://doi.org/10.1016/j.nimb.2012.03.004.CrossRefGoogle Scholar
  8. Dehnert, A., Preusser, F., Kramers, J. D., Akçar, N., Kubik, P. W., Reber, R., et al. (2010). A multi-dating approach applied to proglacial sediments attributed to the most extensive glaciation of the Swiss Alps. Boreas, 39, 620–632.  https://doi.org/10.1111/j.1502-3885.2010.00146.x.Google Scholar
  9. Engel, Z., Mentlík, P., Braucher, R., Křížek, M., Pluháčková, M., Arnold, M., et al. (2017). 10 Be exposure age chronology of the last glaciation of the Roháčská Valley in the Western Tatra Mountains, central Europe. Geomorphology, 293, 130–142.  https://doi.org/10.1016/j.geomorph.2017.05.012.CrossRefGoogle Scholar
  10. Federici, P. R., Granger, D. E., Ribolini, A., Spagnolo, M., Pappalardo, M., & Cyr, A. J. (2012). Last glacial Maximum and the Gschnitz stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas, 41, 277–291.  https://doi.org/10.1111/j.1502-3885.2011.00233.x.CrossRefGoogle Scholar
  11. Federici, P. R., Ribolini, A., & Spagnolo, M. (2016). Glacial history of the Maritime Alps from the last glacial maximum to the little ice age. Geological Society, London, Special Publications.  https://doi.org/10.1144/SP433.9.Google Scholar
  12. Florineth, D., & Schlüchter, C. (2000). Alpine evidence for atmospheric circulation patterns in Europe during the last glacial maximum. Quaternary Research, 54, 295–308.  https://doi.org/10.1006/qres.2000.2169.CrossRefGoogle Scholar
  13. Gianotti, F., Forno, M. G., Ivy-Ochs, S., Monegato, G., Pini, R., & Ravazzi, C. (2015). Stratigraphy of the Ivrea morainic amphitheatre (NW Italy): an updated synthesis. Alpine and Mediterranean Quaternary, 28(1), 29–58.Google Scholar
  14. Gosse, J. C., & Phillips, F. M. (2001). Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews, 20, 1475–1560.  https://doi.org/10.1016/S0277-3791(00)00171-2.CrossRefGoogle Scholar
  15. Graf, H. R. (2009). Stratigraphie von Mittel- und Spätpleistozän in der Nordschweiz. Beiträge zur Geologischen Karte der Schweiz 168. Wabern: Bundesamt für Landestopografie swisstopo.Google Scholar
  16. Graf, A., Akçar, N., Ivy-Ochs, S., Strasky, S., Kubik, P. W., Christl, M., et al. (2015). Multiple advances of Alpine glaciers into the Jura Mountains in the Northwestern Switzerland. Swiss Journal of Geosciences, 108, 225–238.  https://doi.org/10.1007/s00015-015-0195-y.CrossRefGoogle Scholar
  17. Haeberli, W., Linsbauer, A., Cochachin, A., Salazar, C., & Fischer, U. H. (2016). On the morphological characteristics of overdeepenings in high-mountain glacier beds. Earth Surface Processes and Landforms, 41, 1980–1990.  https://doi.org/10.1002/esp.3966.CrossRefGoogle Scholar
  18. Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 142–152.  https://doi.org/10.1016/0033-5894(88)90057-9.CrossRefGoogle Scholar
  19. Heisinger, B., Lal, D., Jull, A., Kubik, P., Ivy-Ochs, S., Knie, K., et al. (2002a). Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth and Planetary Science Letters, 200, 357–369.  https://doi.org/10.1016/S0012-821X(02)00641-6.CrossRefGoogle Scholar
  20. Heisinger, B., Lal, D., Jull, A., Kubik, P., Ivy-Ochs, S., Neumaier, S., et al. (2002b). Production of selected cosmogenic radionuclides by muons: 1. Fast muons. Earth and Planetary Science Letters, 200, 345–355.  https://doi.org/10.1016/S0012-821X(02)00640-4.CrossRefGoogle Scholar
  21. Hemming, S. R. (2004). Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics.  https://doi.org/10.1029/2003RG000128.Google Scholar
  22. Heyman, J., Stroeven, A. P., Harbor, J. M., & Caffee, M. W. (2011). Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters, 302, 71–80.  https://doi.org/10.1016/j.epsl.2010.11.040.CrossRefGoogle Scholar
  23. Ivy-Ochs, S., Kerschner, H., Kubik, P. W., & Schlüchter, C. (2006a). Glacier response in the European Alps to Heinrich event 1 cooling: The Gschnitz stadial. Journal of Quaternary Science, 21, 115–130.  https://doi.org/10.1002/jqs.955.CrossRefGoogle Scholar
  24. Ivy-Ochs, S., Kerschner, H., Reuther, A., Maisch, M., Sailer, R., Schaefer, J., et al. (2006b). The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geological Society of America Special Papers, 415, 43–60.  https://doi.org/10.1130/2006.2415(04).Google Scholar
  25. Ivy-Ochs, S., Schäfer, J., Kubik, P. W., Synal, H.-A., & Schlüchter, C. (2004). Timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae, 97, 47–55.  https://doi.org/10.1007/s00015-004-1110-0.CrossRefGoogle Scholar
  26. Keller, O., & Krayss, E. (2005a). Der Rhein-Linth-Gletscher im letzten Hochglazial. 1. Teil: Einleitung; Aufbau und Abschmelzen des Rhein-Linth-Gletschers im oberen Würm. Vierteljahrsschriften der Naturforschenden Gesellschaft Zürich, 150, 19–32.Google Scholar
  27. Keller, O., & Krayss, E. (2005b). Der Rhein-Linth-Gletscher im letzten Hochglazial. 2. Teil: Datierung und Modelle der Rhein-Linth-Gletscher. Klima Rekonstruktion. Vierteljahrsschriften der Naturforschenden Gesellschaft Zürich, 150, 69–85.Google Scholar
  28. Keller, O., & Krayss, E. (2011). Mittel- und spätpleistozäne Stratigraphie und Morphogenese in Schlüsselregionen der Nordschweiz. E&G – Quaternary Science Journal, 59, 88–119.  https://doi.org/10.3285/eg.59.1-2.08.Google Scholar
  29. Kellerhals, P., Häfeli, C., & Staeger, D. (2000). Geologischer Atlas der Schweiz: Blatt: 1166 Bern. Wabern: Bundesamt für Landestopografie swisstopo.Google Scholar
  30. Kohl, C., & Nishiizumi, K. (1992). Chemical isolation of quartz for measurement of in situ -produced cosmogenic nuclides. Geochimica et Cosmochimica Acta, 56, 3583–3587.  https://doi.org/10.1016/0016-7037(92)90401-4.CrossRefGoogle Scholar
  31. Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., et al. (2010). A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268, 187–191.  https://doi.org/10.1016/j.nimb.2009.09.020.CrossRefGoogle Scholar
  32. Lal, D. (1991). Lal, D. (1991). Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104, 424–439.  https://doi.org/10.1016/0012-821X(91)90220-C.CrossRefGoogle Scholar
  33. Lifton, N., Sato, T., & Dunai, T. J. (2014). Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters, 386, 149–160.  https://doi.org/10.1016/j.epsl.2013.10.052.CrossRefGoogle Scholar
  34. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography.  https://doi.org/10.1029/2004PA001071.Google Scholar
  35. Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R. L., et al. (2015). North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nature Communications.  https://doi.org/10.1038/ncomms7344.Google Scholar
  36. Marrero, S. M., Phillips, F. M., Borchers, B., Lifton, N., Aumer, R., & Balco, G. (2016). Cosmogenic nuclide systematics and the CRONUScalc program. Quaternary Geochronology, 31, 160–187.  https://doi.org/10.1016/j.quageo.2015.09.005.CrossRefGoogle Scholar
  37. Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., & Wick, L. (2007). Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research, 68, 284–302.  https://doi.org/10.1016/j.yqres.2007.07.002.CrossRefGoogle Scholar
  38. Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., & McAninch, J. (2007). Absolute calibration of 10Be AMS standards. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 258, 403–413.  https://doi.org/10.1016/j.nimb.2007.01.297.CrossRefGoogle Scholar
  39. Ochs, M., & Ivy-Ochs, S. (1997). The chemical behavior of Be, Al, Fe, Ca and Mg during AMS target preparation from terrestrial silicates modeled with chemical speciation calculations. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 123, 235–240.  https://doi.org/10.1016/S0168-583X(96)00680-5.CrossRefGoogle Scholar
  40. Phillips, F. M., Argento, D. C., Balco, G., Caffee, M. W., Clem, J., Dunai, T. J., et al. (2016). The CRONUS-earth project: A synthesis. Quaternary Geochronology, 31, 119–154.  https://doi.org/10.1016/j.quageo.2015.09.006.CrossRefGoogle Scholar
  41. Preusser, F., & Graf, H. R. (2002). Erste Ergebnisse von Lumineszenzdatierungen eiszeitlicher Ablagerungen der Nordschweiz. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 84, 419–438.  https://doi.org/10.1127/jmogv/84/2002/419.CrossRefGoogle Scholar
  42. Preusser, F., Graf, H. R., Keller, O., Krayss, E., & Schlüchter, C. (2011). Quaternary glaciation history of northern Switzerland. E&G Quaternary Science Journal, 60, 282–305.Google Scholar
  43. Preusser, F., Reitner, J. M., & Schlüchter, C. (2010). Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss Journal of Geosciences, 103, 407–426.  https://doi.org/10.1007/s00015-010-0044-y.CrossRefGoogle Scholar
  44. Preusser, F., & Schlüchter, C. (2004). Dates from an important early Late Pleistocene ice advance in the Aare valley, Switzerland. Eclogae Geologicae Helvetiae, 97, 245–253.  https://doi.org/10.1007/s00015-004-1119-4.CrossRefGoogle Scholar
  45. Ravazzi, C., Pini, R., Badino, F., de Amicis, M., Londeix, L., & Reimer, P. J. (2014). The latest LGM culmination of the Garda Glacier (Italian Alps) and the onset of glacial termination. Age of glacial collapse and vegetation chronosequence. Quaternary Science Reviews, 105, 26–47.  https://doi.org/10.1016/j.quascirev.2014.09.014.CrossRefGoogle Scholar
  46. Reber, R., Akçar, N., Ivy-Ochs, S., Tikhomirov, D., Burkhalter, R., Zahno, C., et al. (2014). Timing of retreat of the Reuss Glacier (Switzerland) at the end of the last glacial maximum. Swiss Journal of Geosciences, 107, 293–307.  https://doi.org/10.1007/s00015-014-0169-5.CrossRefGoogle Scholar
  47. Reber, R., & Schlunegger, F. (2016). Unravelling the moisture sources of the Alpine glaciers using tunnel valleys as constraints. Terra Nova, 28, 202–211.  https://doi.org/10.1111/ter.12211.CrossRefGoogle Scholar
  48. Scapozza, C., Castelletti, C., Soma, L., Dall’Agnolo, S., & Ambrosi, C. (2014). Timing of LGM and deglaciation in the Southern Swiss Alps. Géomorphologie: Relief, Processus, Environnement, 20(4), 307–322.CrossRefGoogle Scholar
  49. Schlüchter, C. (1976). Geologische Untersuchungen im Quartär des Aaretals südlich von Bern: (Stratigraphie, Sedimentologie, Paläontologie) (Beiträge zur geologischen Karte der Schweiz. Neue Folge). Bern: Stämpfli.Google Scholar
  50. Schlüchter, C. (1987). Talgenese im Quartär: Eine Standortbestimmung. Geographica Helvetica, 42, 109–115.  https://doi.org/10.5194/gh-42-109-1987.CrossRefGoogle Scholar
  51. Schlüchter, C. (1988). A non-classical summary of the Quaternary stratigraphy in the northern Alpine foreland of Switzerland. Bulletin de la Société neuchâteloise de géographie, 23, 143–157.Google Scholar
  52. Ward, G. K., & Wilson, S. R. (1978). Procedures for comparing and combining radiocarbon age determinations: A critique: A CRITIQUE. Archaeometry, 20, 19–31.  https://doi.org/10.1111/j.1475-4754.1978.tb00208.x.CrossRefGoogle Scholar
  53. Wirsig, C., Zasadni, J., Christl, M., Akçar, N., & Ivy-Ochs, S. (2016). Dating the onset of LGM ice surface lowering in the High Alps. Quaternary Science Reviews, 143, 37–50.  https://doi.org/10.1016/j.quascirev.2016.05.001.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  • Lorenz Wüthrich
    • 1
    • 2
  • Ezequiel Garcia Morabito
    • 1
    • 2
  • Jana Zech
    • 1
  • Mareike Trauerstein
    • 1
  • Heinz Veit
    • 1
  • Christian Gnägi
    • 1
  • Silke Merchel
    • 3
  • Andreas Scharf
    • 3
  • Georg Rugel
    • 3
  • Marcus Christl
    • 4
  • Roland Zech
    • 1
    • 2
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.Oeschger Center for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.Helmholtz-Zentrum, Dresden-RossendorfDresdenGermany
  4. 4.Laboratory of Ion Beam PhysicsETH ZurichZurichSwitzerland

Personalised recommendations