Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 1–2, pp 269–293 | Cite as

Subduction-related mafic to felsic magmatism in the Malayer–Boroujerd plutonic complex, western Iran

  • Reza Deevsalar
  • Ryuichi Shinjo
  • Jean P. Liégeois
  • Mohammad V. Valizadeh
  • Jamshid Ahmadian
  • Hadi Yeganehfar
  • Mamoru Murata
  • Iain Neill
Article
  • 128 Downloads

Abstract

The Malayer–Boroujerd plutonic complex (MBPC) in western Iran, consists of a portion of a magmatic arc built by the northeast verging subduction of the Neo-Tethys plate beneath the Central Iranian Microcontinent (CIMC). Middle Jurassic-aged felsic magmatic activity in MBPC is manifested by I-type and S-type granites. The mafic rocks include gabbroic intrusions and dykes and intermediate rocks are dioritic dykes and minor intrusions, as well as mafic microgranular enclaves (MMEs). MBPC Jurassic-aged rocks exhibit arc-like geochemical signatures, as they are LILE- and LREE-enriched and HFSE- and HREE-depleted and display negative Nb–Ta anomalies. The gabbro dykes and intrusions originated from metasomatically enriched garnet-spinel lherzolite [Degree of melting (fmel) ~ 15%] and exhibit negative Nd and positive to slightly negative εHf(T) (+ 3.0 to − 1.6). The data reveal that evolution of Middle Jurassic magmatism occurred in two stages: (1) deep mantle-crust interplay zone and (2) the shallow level upper crustal magma chamber. The geochemical and isotopic data, as well as trace element modeling, indicate the parent magma for the MBPC S-type granites are products of upper crustal greywacke (fmel: 0.2), while I-type granites formed by partial melting of amphibolitic lower crust (fmel: 0.25) and mixing with upper crustal greywacke melt in a shallow level magma chamber [Degree of mixing (fmix): 0.3]. Mixing between andesitic melt leaving behind a refractory dense cumulates during partial crystallization of mantle-derived magma and lower crustal partial melt most likely produced MMEs (fmix: 0.2). However, enriched and moderately variable εNd(T) (− 3.21 to − 4.33) and high (87Sr/86Sr)i (0.7085–0.7092) in dioritic intrusions indicate that these magmas are likely experienced assimilation of upper crustal materials. The interpretations of magmatic activity in the MBPC is consistent with the role considered for mantle-derived magma as heat and mass supplier for initiation and evolution of magmatism in continental arc setting, elsewhere.

Keywords

Zagros Orogen Tethyan subduction zone setting Middle Jurassic Mantle melting Magma mixing Crustal anatexis 

Notes

Acknowledgements

R. D. would like to acknowledge the financial support of the Ministry of Science, Research and Technology of Iran. The authors thank the reviewers for their insightful comments. We also thank Professor Lentz for his constructive suggestions, and Professor Edwin Gnos for organising the reviews and efficient handling of the manuscript.

Supplementary material

15_2017_287_MOESM1_ESM.doc (772 kb)
Supplementary material 1 (DOC 772 kb)
15_2017_287_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (DOC 35 kb)
15_2017_287_MOESM3_ESM.doc (244 kb)
Supplementary material 3 (DOC 244 kb)

References

  1. Acosta-Vigil, A., London, D., Morgan, G. B., VI, & Dewers, T. A. (2003). Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800 °C and 200 MPa, and applications of the aluminum saturation index. Contributions to Mineralogy and Petrology, 146, 100–119.Google Scholar
  2. Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94, 401–419.Google Scholar
  3. Ahadnejad, V. (2009). Petrology, geodynamic and emplacement mechanism of Malayer plutonic complex using anisotropic magnetic susceptibility (AMS). Ph.D. Dissertation, Tehran University, 210 pp.Google Scholar
  4. Ahadnejad, V., Valizadeh, M. V., Deevsalar, R., & Rasouli, J. (2011). The field and microstructural study of Malayer Plutonic Rocks (MPR), West Iran. Geopersia, 1, 59–71.Google Scholar
  5. Ahadnejad, V., Valizadeh, M. V., Deevsalar, R., & Rezaei-Kahkhaei, M. (2010). Age and geotectonic position of the Malayer granitoids: Implication for plutonism in the Sanandaj–Sirjan Zone, W Iran. Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen, 261, 61–75.Google Scholar
  6. Ahadnejad, V., Valizadeh, M. V., & Esmaeili, D. (2008). The role of Shear zone on the emplacement of Malayer Granitoid rocks, NW Iran. Journal of Applied Sciences, 8, 4238–4250.Google Scholar
  7. Ahmadi-Khalaji, A., Esmaeily, D., Valizadeh, M. V., & Rahimpour-Bonab, H. (2007). Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 29, 859–877.Google Scholar
  8. Anderson, D. L. (2007). The eclogite engine: Chemical geodynamics as a Galileo thermometer. In G. R. Foulger & D. M. Jurdy (Eds.), Plates, Plumes and Planetary Processes. Geological Society of America Special Paper, 430, 47–64.  https://doi.org/10.1130/2007.2430(03).
  9. Annen, C., Blundy, J. D., & Sparks, R. S. J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47, 505–539.Google Scholar
  10. Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., & Babaei, A. (2007). Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences, 30, 474–489.Google Scholar
  11. Azizi, H., & Asahara, Y. (2013). Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision. International Geology Review, 55, 1523–1540.Google Scholar
  12. Azizi, H., & Jahangiri, A. (2008). Cretaceous subduction-related volcanism in the northern Sanandaj–Sirjan Zone, Iran. Journal of Geodynamics, 45, 178–190.Google Scholar
  13. Azizi, H., Najari, M., Asahara, Y., Catlos, E. J., Shimizu, M., & Yamamoto, K. (2015). U–Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj–Sirjan Zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics, 660, 47–64.Google Scholar
  14. Azizi, H., Tanaka, T., Asahara, Y., Chung, S-L., & Zarrinkoub, M. H. (2011). Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U–Pb age and Sr–Nd isotopes. Journal of Geodynamics, 52, 304–320.Google Scholar
  15. Azizi, H., Zanjefili-Beiranvand, M., & Asahara, Y. (2014). Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern Sanandaj–Sirjan zone, northwest Iran: Evidence for Late Jurassic arc–continent collision. Lithos, 216–217, 178–195.Google Scholar
  16. Bacon, C. R., & Druitt, T. H. (1988). Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98, 224–256.Google Scholar
  17. Barbarin, B. (1990). Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada Batholith, California. Journal of Geophysical Research, 95, 17747–17756.Google Scholar
  18. Barbarin, B. (2005). Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, origin, and relations with the hosts. Lithos, 80, 155–177.Google Scholar
  19. Barbarin, B., & Didier, J. (1992). Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 145–153.Google Scholar
  20. Beard, J. S., & Lofgren, G. E. (1989). Effect of water on the composition of partial melts of greenstones and amphibolites. Science, 144, 195–197.Google Scholar
  21. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.Google Scholar
  22. Berthier, F. (1974). Etude stratigraphique pétrologique et structurale de la région de Khorramabad. Université de Grenoble, 281.Google Scholar
  23. Chappell, B. W. (1999). Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46, 535–551.Google Scholar
  24. Chappell, B. W., Bryant, C. J., & Wyborn, D. (2012). Peraluminous I-type granites. Lithos, 153, 142–153.Google Scholar
  25. Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 7, 173–174.Google Scholar
  26. Chappell, B. W., & White, J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489–499.Google Scholar
  27. Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S., Khatib, M. M., & Iizuka, Y. (2013). Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163, 70–87.Google Scholar
  28. Collins, W. J., Richards, S. R., Healy, B. E., & Ellison, P. I. (2000). Origin of heterogeneous mafic enclaves by two-stage hybridisation in magma conduits (dykes) below and in granitic magma chambers. Transactions of the Royal Society of Edinburgh: Earth, 91, 27–45.Google Scholar
  29. Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F., Li, Q. L., Yang, Y. H., & Dai, M. N. (2011). Zircon Hf–O isotope evidence for crust-mantle interaction during continental deep subduction. Earth and Planetary Science Letters, 308, 229–244.Google Scholar
  30. Debari, S. M., & Coleman, R. G. (1989). Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic–mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research, 94, 4373–4391.Google Scholar
  31. Deevsalar, R. (2015). Petrology, geochemistry and tectonomagmatic evolution of mafic-intermediate rocks from the Malayer–Boroujerd plutonic complex, northern Sanandaj–Sirjan magmatic zone, Iran. PhD Thesis, Tarbiat Modares University (TMU), Iran.Google Scholar
  32. Deevsalar, R., Ghorbani, M. R., Ghaderi, M., Ahmadian, J., Murata, M., Ozawa, H., et al. (2014). Geochemistry and petrogenesis of arc-related to intraplate mafic magmatism from the Malayer–Boroujerd plutonic complex, northern Sanandaj–Sirjan magmatic zone, Iran. Neues Jahrbuch für Geologie and Paläontologie, Abhandlungen, 274(1), 81–120.Google Scholar
  33. Deevsalar, R., Shinjo, R., Ghaderi, M., Murata, M., Hoskin, P. W. O., Oshiro, S., et al. (2017). Mesozoic-Cenozoic mafic magmatism in Sanandaj–Sirjan Zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from Middle Jurassic and Late Eocene gabbros. Lithos, 284–285, 588–607.Google Scholar
  34. Deevsalar, R., & Valizadeh, M. V. (2010). Using field and microstructural evidence in the determination of origin of magmatic enclaves and metapelitic Xenoliths in Malayer plutonic complex West of Iran. Scientific Quarterly Journal of Geosciences, 19, 9–17. (in Persian, with English abstract).Google Scholar
  35. Deevsalar, R., Valizadeh, M. V., & Ahadnejad, V. (2011). Determining the nature of magmatic encalves in granites from the Malayer plutonic complex based on geochemical and statistical methods. Scientific Quarterly Journal of Geosciences, 21, 129–140. (in Persian, with English abstract).Google Scholar
  36. DePaolo, D. J. (1981). Neodymium isotopes in the Colorado Front range and crust–mantle evolution in the Proterozoic. Nature, 291, 193–196.Google Scholar
  37. Donaire, T., Pascual, E., Pin, C., & Duthou, J. L. (2005). Microgranular enclaves as evidence of rapid cooling in granitoid rocks: The case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contribution Mineralogy and Petrology, 149, 247–265.Google Scholar
  38. Downes, H., Dupuy, C., & Leyreloup, A. F. (1990). Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower-crustal granulitic xenoliths (French Massif Central). Chemical Geology, 83, 209–231.Google Scholar
  39. Duchesne, J. C., Berza, I. T., Liégeois, J. P., & Vander, Auwera J. (1998). Shoshonitic liquid line of descent from diorite to granite: The late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos, 45, 281–303.Google Scholar
  40. Esna-Ashari, A., Tiepolo, M., Valizadeh, M. V., Hassanzadeh, J., & Sepahi, A. A. (2012). Geochemistry and zircon U-Pb geochronology of Aligoodarz granitoid complex, Sanandaj–Sirjan zone, Iran. Journal of Asian Earth Sciences, 43, 11–22.Google Scholar
  41. Foden, J. D., & Green, D. H. (1992). Possible role of amphibole in the origin of andesite: Some experimental and natural evidence. Contributions to Mineralogy and Petrology, 109, 479–493.Google Scholar
  42. Förster, H. J., Tischendorf, G., Trumbull, R. B., & Gottesman, B. (1999). Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40, 1613–1645.Google Scholar
  43. Ghaffari, M., Rashidnejad-Omran, N., Dabiri, R., Chen, B., & Santos, J. F. (2013). Mafic–intermediate plutonic rocks of the Salmas area, northwestern Iran: Their source and petrogenesis significance. International Geology Review, 55, 2016–2029.Google Scholar
  44. Ghalamghash, J., Mirnejad, H., & Rashid, H. (2009a). Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj–Sirjan zone, NW Iran: A case study from the Alvand pluton. Neues Jahrbuch für Mineralogie, Abhandlungen, 186, 79–93.Google Scholar
  45. Ghalamghash, J., Nedelec, A., Bellon, H., Vousoughi-Abedini, M., & Bouchez, J. L. (2009b). The Urumieh plutonic complex (NW Iran): A record of the geodynamic evolution of the Sanandaj–Sirjan zone during Cretaceous times- part I: Petrogenesis and K/Ar dating. Journal of Asian Earth Sciences, 35, 401–415.Google Scholar
  46. Ghalamghash, J., Vousoughi-Abedini, M., Bellon, H., Emami, M. H., Pourmoafi, M., & Rashid, H. (2003). K/Ar age dating of Oshnavieh plutonic complex. Iranian Quarterly Journal of Geosciences, 11, 16–27.Google Scholar
  47. Ghasemi, A., & Talbot, C. J. (2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26, 683–693.Google Scholar
  48. Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O’Reilly, S. Y., Xu, X. S., et al. (2002). Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61, 237–269.Google Scholar
  49. Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., Chatterjee, N., Muntener, O., & Gaetani, G. A. (2003). Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology, 145, 515–533.Google Scholar
  50. Grove, T., Parman, S., Bowring, S., Price, R., & Baker, M. (2002). The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contribution to Mineralogy and Petrology, 142, 375–396.Google Scholar
  51. Guffanti, M., Clynne, M. A., & Muffler, L. J. P. (1996). Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt influx to the lower crust. Journal of Geophysical Research, 101, 3001–3013.Google Scholar
  52. Hassanzadeh, J., Stockli, D. F., Horton, B. K., Axen, G. J., Stockli, L. D., Grove, M., et al. (2008). U–Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics, 451, 71–96.Google Scholar
  53. Hibbard, M. J. (1995). Petrography to petrogenesis. New Jersey: Prentice Hall.Google Scholar
  54. Hildreth, E. W., & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 76, 177–195.Google Scholar
  55. Hofmann, A. W. (2005). Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace Elements. In R. W. Carlson (Ed.), The mantle and core (pp. 61–101). Amsterdam: Elsevier.Google Scholar
  56. Ionov, D. A., Bodinier, J.-L., Mukasa, S. B., & Zanetti, A. (2002). Mechanisms and sources of mantle metasomatism: Major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology, 43, 2219–2259.Google Scholar
  57. Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523–548.Google Scholar
  58. Izebekov, P., Gardner, J. E., & Eichelberger, J. C. (2004). Comagmatic granophrye and dacite from Karymsky volcanic center, Kamchakta; experimental constraints and magma storage conditions. Journal of Volcanology and Geothermal Research, 131, 1–18.Google Scholar
  59. Jicha, B. R., Singer, B. S., Beard, B. L., Johnson, C. M., Moreno-Roa, H., & Naranjo, J. A. (2007). Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue-Cordón Caulle, Southern Volcanic Zone, Chile. Earth and Planetary Science Letters, 255, 229–242.Google Scholar
  60. Johnson, M. C., & Plank, T. (1999). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry Geophysics Geosystem, 1, 1–26.Google Scholar
  61. Kelemen, P., Hanghøj, K., & Greene, A. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochemistry, 3, 593–659.Google Scholar
  62. Kessel, R., Ulmer, P., Pettke, T., Schmidt, M., & Thompson, A. (2005). The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 C. Earth and Planetary Science Letter, 237, 873–892.Google Scholar
  63. Kheirkhah, M., Neill, I., & Allen, M. B. (2015). Petrogenesis of OIB-like basaltic volcanic rocks in a continental collision zone: Late Cenozoic magmatism of Eastern Iran. Journal of Asian Earth Sciences, 406, 19–33.Google Scholar
  64. Kheirkhah, M., Neill, I., Allen, M. B., & Ajdari, K. (2013). Small-volume melts of lithospheric mantle during continental collision: Late Cenozoic lavas of Mahabad, NW Iran. Journal of Asian Earth Sciences, 74, 37–49.Google Scholar
  65. Kogiso, T., Tatsumi, Y., & Nakano, S. (1997). Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148, 193–205.Google Scholar
  66. Langmuir, C. H. (1989). Geochemical consequences of in situ crystallization. Nature, 340, 199–205.Google Scholar
  67. Langmuir, C. H., Vocke, R. D., Jr., Gilbert, N. H., & Stanley, R. H. (1978). A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37, 380–392.Google Scholar
  68. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., Zanettni, B., & IUGS Subcommission on the systematics of igneous rocks. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.Google Scholar
  69. Liankun, S., & Kuirong, Y. (1991). A two-stage crust-mantle interaction model for mafic microgranular enclaves in the Doning granodiorite Pluton, Guangxi, China. In J. Didier & B. Barbarin (Eds.), Enclaves and granite petrology (pp. 95–112). Amsterdam: Elsevier.Google Scholar
  70. Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B., & Mohajjel, M. (2011). U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran. Journal of Asian Earth Sciences, 41, 238–249.Google Scholar
  71. Marshall, L. A., & Sparks, R. S. J. (1984). Origin of some mixed magma and net-veined ring intrusions. Journal of the Geological Society, 141, 171–182.Google Scholar
  72. Masoudi, F. (1997). Contact metamorphism and pegmatite development in the region SW of Arak, Iran. PhD thesis, The University of Leeds, UK.Google Scholar
  73. Mazhari, S. A., Amini, S., Ghalamghash, J., & Bea, F. (2011). Petrogenesis of granitic unit of Naqadeh complex, Sanandaj-Sirjan Zone, NW Iran. Arabian Journal of Geosciences, 4, 59–67.Google Scholar
  74. McCulloch, M. T., & Chappell, B. W. (1982). Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters, 58, 51–64.Google Scholar
  75. Mederer, J., Moritz, R., Ulianov, A., & Chiaradia, M. (2013). Middle Jurassic to Cenozoic evolution of arc magmatism during Neotethys subduction and arc-continent collision in the Kapan Zone, southern Armenia. Lithos, 177, 61–78.Google Scholar
  76. Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274, 321–355.Google Scholar
  77. Mohajjel, M., & Fergusson, C. L. (2014). Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56, 263–287.Google Scholar
  78. Moinevaziri, H., Akbarpour, A., & Azizi, H. (2014). Mesozoic magmatism in the northwestern Sanandaj–Sirjan zone as an evidence for active continental margin. Arab Journal of Geosciences.  https://doi.org/10.1007/s12517-014-1309-y.Google Scholar
  79. Montel, J. M., & Vielzeuf, D. (1997). Partial melting of metagreywacke, Part II. Compositions of minerals and melts. Contributions to Mineralogy and Petrology, 128, 176–196.Google Scholar
  80. Müntener, O., Kelemen, P. B., & Grove, T. L. (2001). The role of H2O during crystallisation of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contributions to Mineralogy and Petrology, 141, 643–658.Google Scholar
  81. Neill, I., Meliksetian, K., Allen, M. B., Navasardyan, G., & Kuiper, L. (2015). Petrogenesis of mafic collision zone magmatism: The Armenian sector of the Turkish–Iranian Plateau. Chemical Geology, 403, 24–41.Google Scholar
  82. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutite. Nature, 299, 715–717.Google Scholar
  83. Nowell, G. M., Pearson, D. G., Bell, D. R., Carlson, R. W., Smith, C. B., Kempton, P. D., et al. (2004). Hf isotope systematics of Kimberlites and their megacrysts: New constraints on their source regions. Journal of Petrology, 45, 1583–1612.Google Scholar
  84. O’Neill, H. S. C., & Jenner, F. E. (2012). The global pattern of trace-element distributions in ocean floor basalts. Nature, 491, 698–704.Google Scholar
  85. Omrani, J. (2008). Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106, 380–398.Google Scholar
  86. Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Lin, Y. C., Lee, H. Y., Lo, C. H., et al. (2013). Iranian ultrapotassic volcanism at ~ 11 Ma signifies the initiation of post-collision magmatism in the Arabia-Eurasiacollisionzone. Terra Nova, 25, 405–413.Google Scholar
  87. Patiño Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In A. Castro, C. Fernandez & J. L. Vigneresse (Eds.), Understanding Granites: Integrating New and Classical Techniques: Geological Society, London, Special Publications, 168, 55–75.Google Scholar
  88. Patiño Douce, A. E., & Harris, N. (1998). Experimental constraints on Himalayan anatexis. Journal of Petrology, 39, 689–710.Google Scholar
  89. Patiño Douce, A. E., & Johnston, A. D. (1991a). Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids. Contributions to Mineralogy and Petrology, 107, 202–218.Google Scholar
  90. Patiño Douce, A. E., & Johnston, A. D. (1991b). Phase equilibria and melt productivity in the pelite system: Implications for the origin of peraluminous granitoids and aluminous gneisses. Contribution of Mineralogy and Petrology, 107, 202–218.Google Scholar
  91. Patiño Douce, A. E., & McCarthy, T. C. (1998). Melting of crustal rocks during continental collision and subduction. In B. R. Hacker & J. G. Doc (Eds.), When Continents Collide: Geodynamics and Geochemistry of Ultra-high Pressure Rocks (pp. 27–55). Dordrecht: Kluwer Academic Publishers.Google Scholar
  92. Paul, A., Kaviani, A., Hatzfeld, D., Tatar, M., & Priestley, K. (2010). Seismic imaging of thelithospheric structure of the Zagros Mountain belt Iran. Journal of Geological Society of London Special Publication, 330, 5–18.Google Scholar
  93. Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J., & Mokhtari, M. (2006). Seismological evidence for crustal-scale thrusting in the Zagros mountain belt Iran. Geophysical Journal International, 166, 227–237.Google Scholar
  94. Plank, T., & Langmuir, C. H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325–394.Google Scholar
  95. Reiners, P. W., Nelson, B. K., & Ghiorso, M. S. (1995). Assimilation of felsic crust by basaltic magma: Thermal limits and extents of crustal contamination of mantle-derived magmas. Geology, 23, 563–566.Google Scholar
  96. Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation (p. 325). Harlow: Longmans.Google Scholar
  97. Sahakyan, L., Bosch, D., Sosson, M., Avagyan, A., Galoyan, G. H., Rolland, Y., et al. (2016). Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): Evidence of a subduction geodynamic environment. Geological Society, London, Special Publications, 428, 73–98.Google Scholar
  98. Sepahi, A. A. (2008). Typology and petrogenesis of granitic rocks in the Sanandaj–Sirjan metamorphic belt, Iran: With emphasis on the Alvand plutonic complex. Neues Jahrbuch für Geologie und Paleontologie Abhandlungen, 247, 295–312.Google Scholar
  99. Sepahi, A. A., Shahbazi, H., Siebel, W., & Ranin, A. (2014). Geochronology of plutonic rocks from the Sanandaj–Sirjan Zone, Iran and new zircon and titanite U–Th–Pb ages for granitoids from the marivan pluton. Geochronometria, 41, 207–215.Google Scholar
  100. Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A. A., Shang, C. K., et al. (2010). Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone Iran: New evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39, 668–683.Google Scholar
  101. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., & Nikogosian, I. K. (2005). An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590–597.Google Scholar
  102. Spandler, C., Hermann, J., Faure, K., Mavrogenes, J. A., & Arculus, R. J. (2008). The importance of talc and chlorite ‘hybrid’ rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction melange of new Caledonia. Contributions to Mineralogy and Petrology, 155, 181–198.Google Scholar
  103. Stöcklin, J. (1968). Structural history and tectonics of Iran: A review. Bulletin of the American Association of Petroleum Geologists, 52, 1229–1258.Google Scholar
  104. Stormer, J. C., & Nicolls, J. (1978). XLFRAC: A program for the interactive testing of magmatic differentiation models. Computer and Geosciences, 4, 143–159.Google Scholar
  105. Stracke, A. (2012). Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330–331, 274–299.Google Scholar
  106. Streckeisen, A. L., & Le Maitre, R. W. (1979). A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen, 136, 169–206.Google Scholar
  107. Su, B.-X., Chung, S.-L., Zarrinkoub, M. H., Pang, K.-N., Chen, L., Ji, W.-Q., et al. (2014). Composition and structure of the lithospheric mantle beneath NE Iran: Constraints from mantle xenoliths. Lithos, 202–203, 267–282.Google Scholar
  108. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunders & M. Norry, (Eds), Magmatism in ocean basins. Geological Society of London Special Publication, 42, 313–345.Google Scholar
  109. Tahmasbi, Z., Castro, A., Khalili, M., Ahmadi Khalaji, A., & de la Rosa, J. (2010). Petrologic and geochemical constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran. Journal of Asian Earth Sciences, 39, 81–96.Google Scholar
  110. Tatsumi, Y. (2000). Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochemistry Geophysics Geosystems, 1.  https://doi.org/10.1029/2000GC000094.
  111. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.Google Scholar
  112. Thompson, R. N. (1982). Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology, 18, 49–107.Google Scholar
  113. Tuttle, O. F., & Bowen, N. L. (1958). Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–HO2. Mem. Geological Society America, 74, 153.Google Scholar
  114. Ulmer, P. (2001). Partial melting in the mantle wedge—the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas. Physics of the Earth and Planetary Interiors, 127, 215–232.Google Scholar
  115. Verma, S. P. (2006). Extension-related origin of magmas from a garnet-bearing source in the Los Tuxtlas volcanic field, Mexico. International Journal of Earth Science (Geol Rundsch), 95, 871–890.Google Scholar
  116. Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., & Albarede, F. (1999). Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168, 79–99.Google Scholar
  117. Vielzeuf, D., & Holloway, J. R. (1988). Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98, 257–276.Google Scholar
  118. Vielzeuf, D., & Montel, J. M. (1994). Partial melting of metagreywackes. 1. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117, 375–393.Google Scholar
  119. Vousoughi Abedini, M. (2010). Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone Iran: New evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39, 668–683.Google Scholar
  120. Wang, Y., Zhang, F. F., Fan, W. M., Zhang, G. W., Chen, S. Y., Cawood, P. A., et al. (2010). Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U–Pb geochronology. Tectonics, 29, 6.Google Scholar
  121. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(217–1), 239.Google Scholar
  122. Whitney, D. L., & Evans, B. W. (2010). Abbreviations for name of rock-forming minerals. American Mineralogist, 95, 185–187.Google Scholar
  123. Wilson, M. (1989). Igneous petrogenesis. Unwin Hyman Ed, London.Google Scholar
  124. Yeganehfar, H., & Deevsalar, R. (2016). Emplacement PT conditions of granitoids from the NW-part of the Malayer-Boroujerd plutonic complex, W Iran. Journal of Tethys, 4, 346–360.Google Scholar
  125. Zhao, Z. F., Dai, L. Q., & Zheng, Y. F. (2015). Two types of the crust-mantleinteraction in continental subduction zones. Science China: Earth Sciences, 58, 1269–1283.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  • Reza Deevsalar
    • 1
  • Ryuichi Shinjo
    • 2
  • Jean P. Liégeois
    • 3
  • Mohammad V. Valizadeh
    • 4
  • Jamshid Ahmadian
    • 5
  • Hadi Yeganehfar
    • 5
  • Mamoru Murata
    • 6
  • Iain Neill
    • 7
  1. 1.Department of GeologyTarbiat Modares UniversityTehranIran
  2. 2.Department of Physics and Earth SciencesUniversity of the RyukyusOkinawaJapan
  3. 3.Geodynamics and Mineral ResourcesRoyal Museum for Central AfricaTervurenBelgium
  4. 4.Department of GeologyUniversity of TehranTehranIran
  5. 5.Department of GeologyPayame Noor University (PNU)TehranIran
  6. 6.Department of GeosciencesNaruto University of EducationNarutoJapan
  7. 7.School of Geographical and Earth SciencesUniversity of GlasgowGlasgowUK

Personalised recommendations