Swiss Journal of Geosciences

, Volume 110, Issue 2, pp 613–630

Three-dimensional modelling of folds, thrusts, and strike-slip faults in the area of Val de Ruz (Jura Mountains, Switzerland)

  • Davood M. Yosefnejad
  • Thorsten J. Nagel
  • Nikolaus Froitzheim
Article
  • 152 Downloads

Abstract

The Val-de-Ruz syncline is a northeast-southwest trending, rhomb-shaped synclinal basin in the internal part of the central Jura Mountains. The Mesozoic sediment succession is decoupled from the basement by a décollement horizon in Middle Triassic evaporite-bearing layers at depth and folding is associated with southeast-dipping thrust splays rooting into this décollement. The folds and thrusts also interfere with a system of N-S striking, sinistral strike-slip faults. A 3D model was constructed from the following input data: A digital elevation model, the 1:25,000 geological map of Switzerland, published contours of the top of basement based on drilling and seismics, and nine newly constructed cross-sections. The latter are based on surface geology and published seismic data. Cross-sections parallel to the northwestward transport direction, i.e. perpendicular to the overall strike, are line balanced. Anticlines are interpreted as faulted detachment folds, which initiated by buckling and associated flow of evaporites from synclinal to anticlinal areas. Anticlines were later broken by northwest-vergent thrusts and subsequently developed into fault-propagation folds during décollement from the basement and northwestward translation. The model assumes no faulting in the pre-Mesozoic basement and no hidden flat-ramp tectonics in the subsurface in order to account for structurally high positions. As a consequence, the modelled cumulative, post-deformation thickness of Triassic strata locally exceeds 1500 m, which we find in accordance with regional observations. From the geological 3D model, new cross-sections in any desired orientation and tectonic thickness variations of the layers can be extracted. The three output cross-sections presented are in excellent agreement with published reflection seismic data. The most important features of our model are (1) large thickness variations due to lateral flow of evaporites, and (2) new and plausible explanation of structural highs in terms of accumulation of Triassic strata by lateral flow.

Keywords

3D modelling Jura Mountains Val de Ruz Detachment fold 

Supplementary material

15_2017_261_MOESM1_ESM.pdf (23 mb)
Input profiles C4, 5, 6, 7, and 9. See caption of Fig. 4 (PDF 23582 kb)
15_2017_261_MOESM2_ESM.zip (209 mb)
Supplementary material 2 (ZIP 214045 kb)

References

  1. Affolter, T., & Gratier, J.-P. (2004). Map view retrodeformation of an arcuate fold-and-thrust belt: The Jura case. Journal of Geophysical Research, 109, B03404. doi:10.1029/2002JB002270.CrossRefGoogle Scholar
  2. Aubert, D. (1945). Le Jura et la tectonique d’écoulement. Mémoire de la Société Vaudoise des Sciences Naturelles, 8, 217–236.Google Scholar
  3. Bitterli, P. (1972). Erdölgeologische Forschungen im Jura. Bulletin der Vereinigung Schweizerischer Petroleum-Geologen undIngenieure, 39, 13–28.Google Scholar
  4. Bourquin, P., Buxtorf, R., Frei, E., Lüthi, E., Mühlenthaler, C., Ryniker, K., et al. (1968). Atlas géologique de la Suisse 1:25‘000, feuille 51 Val de Ruz. Basel: Commission géologique Suisse.Google Scholar
  5. Bundesamt für Wasser und Geologie (2005). Geologische Karte der Schweiz 1:500 000. Bern-Ittingen.Google Scholar
  6. Burkhard, M. (1990). Aspects of the large-scale Miocene deformation in the most external part of the Swiss Alps (Subalpine Molasse to Jura fold belt). Eclogae Geologicae Helvetiae, 83, 559–583.Google Scholar
  7. Buxtorf, A. (1907). Geologische Beschreibung des Weissensteintunnels und seiner Umgebung. Beiträge zur Geologischen Karte der Schweiz (N.F.), 21.Google Scholar
  8. Buxtorf, A. (1916). Prognosen und Befunde beim Hauensteinbasis- und Grenchenbergtunnel und die Bedeutung der letzteren für die Geologie des Juragebirges. Verhandlungen der Naturforschenden Gesellschaft in Basel, 27, 184–254.Google Scholar
  9. Caer, T., Maillot, B., Souloumiac, P., Leturmy, P., Frizon de Lamotte, D., & Nussbaum, F. (2015). Mechanical validation of balanced cross-sections: The case of the Mont Terri anticline at the Jura front (NW Switzerland). Journal of Structural Geology, 75, 32–48.CrossRefGoogle Scholar
  10. Davis, D. M., & Engelder, T. (1985). The Role of Salt in Fold-and-Thrust Belts. Tectonophysics, 119, 67–88.CrossRefGoogle Scholar
  11. Diebold, P. (1988). Der Nordschweizer Permokarbon-Trog und die Steinkohlenfrage der Nordschweiz. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 133, 143–174.Google Scholar
  12. Fischer, H. & Luterbacher, H. (1963). Das Mesozoikum der Bohrungen Courtion 1 (Kt. Fribourg) und Altishofen 1 (Kt. Luzern). Beiträge zur Geologischen Karte der Schweiz (N.F.), 115, 40 pp.Google Scholar
  13. Frehner M., Reif D. & Grasemann B. (2012): Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan Region of Iraq). Tectonics 31, TC3002, doi:10.1029/2011TC003010.
  14. Ghassemi, M. R., Schmalholz, S. M., & Ghassemi, A. R. (2010). Kinematics of constant arc length folding for different fold shapes. Journal of Structural Geology, 32, 755–765. doi:10.1016/j.jsg.2010.05.002.CrossRefGoogle Scholar
  15. Gorin, G. E., Signer, C., & Amberger, G. (1993). Structural configuration of the western Swiss Molasse Basin as defined by reflection seismic data. Eclogae Geologicae Helvetiae, 86, 693–716.Google Scholar
  16. Grasemann, B., & Schmalholz, S. M. (2012). Lateral fold growth and fold linkage. Geology, 40, 1039–1042. doi:10.1130/G33613.1.CrossRefGoogle Scholar
  17. Groupe de travail PGN (2008). Evaluation du potentiel géothermique du canton de Neuchâtel (PGN). Vol.1: Rapport final, Vol.2: Annexes, CREGE 11-08/02, Neuchâtel; http://www.ne.ch/autorites/DDTE/SCAT/Documents/02_Plan_directeur_cantonal/Evaluation_potentiel_geothermique_canton_Neuchatel.pdf.
  18. Guellec, S., Mugnier, J. L., Tardy, M. & Roure, F. (1990). Neogene evolution of the western Alpine foreland in the light of ECORS data and balanced cross sections. In: Roure, F., Heitzmann, P. & Polino, R. (Eds.), Deep structure of the Alps. Mémoire de la Société Géologique Suisse, 1, 165–184.Google Scholar
  19. Jordan, P. (1992). Evidence for large scale decoupling in the Triassic evaporites of Northern Switzerland: an overview. Eclogae Geologicae Helvetiae, 85, 677–693.Google Scholar
  20. Kälin, D. (1997). Litho- und Biostratigraphie der mittel- bis obermiozänen Bois de Raube – Formation (Nordwestschweiz). Eclogae Geologicae Helvetiae, 90, 97–114.Google Scholar
  21. Keller, W.T. & Liniger, H. (1930). Geologischer Atlas der Schweiz, Blätter 92-95 MovelierSoyhieresDelemontCourrendlin. Schweizerische Geologische Kommission.Google Scholar
  22. Laubscher, H. P. (1961). Die Fernschubhypothese der Jurafaltung. Eclogae Geologicae Helvetiae, 54, 221–280.Google Scholar
  23. Laubscher, H. P. (1965). Ein kinematisches Modell der Jurafaltung. Eclogae Geologicae Helvetiae, 58, 231–318.Google Scholar
  24. Laubscher, H. P. (1972). Some overall aspects of Jura dynamics. American Journal of Science, 272, 293–304.CrossRefGoogle Scholar
  25. Laubscher, H. P. (2003). Balanced sections and the propagation of décollement: A Jura perspective. Tectonics, 22, article 1063, doi:10.1029/2002TC001427.
  26. Laubscher, H. (2008). The Grenchenberg conundrum in the Swiss Jura: a case for the centenary of the thin-skin décollement nappe model (Buxtorf 1907). Swiss Journal of Geosciences, 101(1), 41–60. doi:10.1007/s00015-008-1248-2.CrossRefGoogle Scholar
  27. Loup, B. (1992). Mesozoic subsidence and stretching models of the lithosphere in Switzerland (Jura, Swiss Plateau and Helvetic realm). Eclogae Geologicae Helvetiae, 85, 541–572.Google Scholar
  28. Madritsch, H., Fabbri, O., Hagedorn, E.-M., Preusser, F., Schmid, S. M., & Ziegler, P. A. (2010). Feedback between erosion and active deformation: geomorphic constraints from the frontal Jura fold-and-thrust belt (eastern France). International Journal of Earth Sciences, 99(Suppl. 1), S103–S122.CrossRefGoogle Scholar
  29. Madritsch, H., Schmid, S.M. & Fabbri, O. (2008). Interactions between thin- and thick-skinned tectonics at the northwestern front of the Jura fold-and-thrust belt (eastern France). Tectonics, 27, TC5005, doi:10.1029/2008TC002282.
  30. Malz, A., Madritsch, H., Meier, B., & Kley, J. (2016). An unusual triangle zone in the external northern Alpine foreland (Switzerland): Structural inheritance, kinematics and implications for the development of the adjacent Jura fold-and-thrust belt. Tectonophysics, 670, 127–143.CrossRefGoogle Scholar
  31. Marquer, D., Calcagno, P., Barfety, J.-C., & Baudin, T. (2006). 3D modeling and kinematics of the external zone of the French Western Alps (Belledonne and Grand Chatelard Massifs, Maurienne Valley, Savoie). Eclogae Geologicae Helvetiae, 99, 211–222.CrossRefGoogle Scholar
  32. Maxelon, M., & Mancktelow, N. S. (2005). Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps, Switzerland and Northern Italy. Earth Science Reviews, 71, 171–227.CrossRefGoogle Scholar
  33. Mitra, S. (2003). A unified kinematic model for the evolution of detachment folds. Journal of Structural Geology, 25, 1659–1673.CrossRefGoogle Scholar
  34. Pavoni, N. (1961). Faltung durch Horizontalverschiebung. Eclogae Geologicae Helvetiae, 54, 515–534.Google Scholar
  35. Pfiffner, O. A., Erard, P.-F. & Stäuble, M. (1997). Two cross sections through the Swiss Molasse Basin (lines E4-E6, W1, W7-W10). In: Pfiffner, O. A. et al. (Eds.): Deep structure of the Swiss Alps, results of NFP 20. Birkhäuser Verlag Basel, 73–100.Google Scholar
  36. Pfirter, U. (1997). Atlas géologique de la Suisse 1:25,000, feuille 1106 Moutier. Basel: Commission géologique Suisse.Google Scholar
  37. Philippe, Y., Colletta, B., Deville, E., Mascle, A. (1996). The Jura fold-and-thrust belt: a kinematic model based on map-balancing. In: Ziegler, P.A. & Horvath, F. (Eds.): Peri-Tethys Memoir 2: Structure and prospects of Alpine basins and forelands. Mémoires du Muséum National d’Histoire Naturelle, Paris, 170, 235-261.Google Scholar
  38. Sala, P., Pfiffner, A. O., & Frehner, M. (2014). The Alpstein in three dimensions: fold-and-thrust belt visualization in the Helvetic zone, eastern Switzerland. Swiss Journal of Geosciences, 107, 177–195.CrossRefGoogle Scholar
  39. Schori, M., Mosar, M., & Schreurs, G. (2015). Multiple detachments during thin-skinned deformation of the Swiss Central Jura: a kinematic model across the Chasseral. Swiss Journal of Geosciences, 108, 327–343.CrossRefGoogle Scholar
  40. Sommaruga, A. (1995). Tectonics of the central Jura and the Molasse Basin. New insights from the interpretation of seismic reflection data. Bulletin de la Société Neuchatêloise des Sciences Naturelles, 118, 95–108.Google Scholar
  41. Sommaruga, A. (1997). Geology of the Central Jura and the Molasse Basin: New insight into an evaporite-based foreland fold and thrust belt. Mémoire de la Société Neuchatêloise des Sciences Naturelles, 12, 1–176.Google Scholar
  42. Sommaruga, A. (1999). Décollement tectonics in the Jura foreland fold-and-thrust belt. Marine and Petroleum Geology, 16, 111–134.CrossRefGoogle Scholar
  43. Sommaruga, A. & Burkhard, M. (1997). Interpretation of seismic lines across the rhomb shaped Val-de-Ruz Basin (internal Folded Jura). In: Pfiffner, O.-A. et al. (Eds.), Deep structure of the Swiss Alps, results of NFP 20. BirkhäuserVerlag Basel, 45–53.Google Scholar
  44. Sommaruga, A., Eichenberger, U. & Marillier, F. (2012). Seismic Atlas of the Swiss Molasse Basin. Beiträge zur Geologie der Schweiz—Geophysik, 44.Google Scholar
  45. Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science, 283, 684–721.CrossRefGoogle Scholar
  46. Suppe, J., & Medwedeff, D. A. (1990). Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83, 409–454.Google Scholar
  47. Tanner, D., Behrmann, J., & Dresmann, H. (2003). Three-dimensional retro-deformation of the Lechtal nappe, Northern Calcareous Alps. Journal of Structural Geology, 25, 737–748.CrossRefGoogle Scholar
  48. Tschanz, X. (1990). Analyse de la déformation du Jura central entre Neuchâtel (Suisse) et Besançon (France). Eclogae Geologicae Helvetiae, 83, 543–558.Google Scholar
  49. Tschanz, X., & Sommaruga, A. (1993). Deformation associated with folding above frontal and oblique ramps around the rhomb shaped Val de Ruz basin. Annales Tectonicae, 7, 53–70.Google Scholar
  50. Ustaszewski, K. & Schmid, S.M. (2006). Control of preexisting faults on geometry and kinematics in the northernmost part of the Jura fold-and-thrust belt. Tectonics, 25, TC5003, doi: 10.1029/2005TC001915.
  51. Zanchi, A., Salvi, F., Zanchetta, S., Sterlacchini, S., & Guerra, G. (2009). 3D reconstruction of complex geological bodies: examples from the Alps. Computers & Geosciences, 35, 49–69.CrossRefGoogle Scholar
  52. Ziegler, P. A. (1982). Geological Atlas of Western and Central Europe (p. 130). Den Haag: Shell Internationale Petroleum Maatschappij B.V.Google Scholar

Copyright information

© Swiss Geological Society 2017

Authors and Affiliations

  • Davood M. Yosefnejad
    • 1
  • Thorsten J. Nagel
    • 2
  • Nikolaus Froitzheim
    • 1
  1. 1.Steinmann-InstitutUniversity of BonnBonnGermany
  2. 2.Department of GeoscienceAarhus UniversityAarhusDenmark

Personalised recommendations