Swiss Journal of Geosciences

, Volume 110, Issue 2, pp 653–675 | Cite as

3D structural model and kinematic interpretation of the Panixer Pass Transverse Zone (Infrahelvetic Complex, eastern Switzerland)

  • Pascal A. von Däniken
  • Marcel Frehner


The Panixer Pass Transverse Zone in the eastern Swiss Alps is oriented perpendicular to most alpine structures in the area. Its main element is the SSE-trending Crena-Martin Fold, a downward facing fold with Permian Verrucano in its core, which is cut by the Glarus Thrust. Hence Verrucano can be found below the Glarus Thrust in the Infrahelvetic Complex. Across the Panixer Pass Transverse Zone the structural buildup of the Infrahelvetic Complex changes considerably. Multiple published theories of the structural evolution are not satisfying particularly because traditional 2D geological cross-sections are insufficient to understand the 3D complexity. The main result and product of our study is a 3D structural model of the Panixer Pass Transverse Zone providing insight into its geometry. As modeling input, we produced a lithostratigraphic map and collected structural orientation data. The 3D structural model honors the observed surface geology and the expected 3D subsurface geometry. Our field data indicates that the shearing and transport direction was continuously NNW-directed, except for a phase of north-directed shearing during the early movement along the Glarus Thrust (late Calanda Phase) and related foliation development in the Helvetic Nappes. The Panixer Pass Transverse Zone developed prior to the penetrative foliation during a thrust-dominated deformation phase (Cavistrau Phase), for which we created a kinematic block model. According to this model, the Crena-Martin Fold is the result of multiple lateral ramps and related lateral fault-bend folds that all developed in a similar positon. In particular, we do not propose ENE-WSW-directed shortening to form the Crena-Martin Fold. The latter was finally cut at low angle by a dextral strike-slip fault to create the final geometry of the Panixer Pass Transverse Zone. Our kinematic model reproduces the main features of the 3D structural model and embeds well into previously proposed sequences of deformation phases.


Panixer Pass Fold Structural model Verrucano Glarus Thrust 



This work is largely based on the Master’s thesis of P. A. von Däniken. We thank Neil Mancktelow and Eric Reusser for helpful comments and suggestions on the Master’s thesis. Special thanks go to Urs von Däniken for logistic support during the field work. We thank the reviewers D. Gasser and M. Herwegh, the editor S. Schmid, as well as B. den Brok for their valuable inputs; yet we acknowledge that they may disagree with some of our work. For this work we used the geological software packages ArcGIS (version 10.3; ESRI), Stereonet (version 7.3; Richard W. Allmendinger; Allmendinger et al. 2012), and GeoModeller (version 2014; BRGM and Intrepid Geophysics).

Supplementary material

15_2016_230_MOESM1_ESM.pdf (66 kb)
Supplementary material 1 (PDF 65 kb) (349 kb)
Supplementary material 2 (ZIP 350 kb) (190.7 mb)
Supplementary material 3 (ZIP 195 mb)
15_2016_230_MOESM4_ESM.pdf (169.2 mb)
Supplementary material 4 (PDF 169 mb)


  1. Abart, R., Badertscher, N., Burkhard, M., & Povoden, E. (2002). Oxygen, carbon and strontium isotope systematics in two profiles across the Glarus thrust: Implications for fluid flow. Contributions to Mineralogy and Petrology, 143(2), 192–208. doi: 10.1007/s00410-001-0326-5.CrossRefGoogle Scholar
  2. Allmendinger, R. W., Cardozo, N., & Fischer, D. M. (2012). Structural geology algorithms: Vectors and tensors. New York: Cambridge University Press.Google Scholar
  3. Aug, C., Chiles, J. P., Courrioux, G., & Lajaunie, C. (2005). 3D geological modelling and uncertainty: The potential-field method. In O. Leuangthong & V. C. Deutsch (Eds.), Geostatistics Banff 2004 (Vol. 14, pp. 145–154). Dordrecht: Springer.CrossRefGoogle Scholar
  4. Badertscher, N. P., Abart, R., Burkhard, M., & McCaig, A. (2002a). Fluid flow pathways along the Glarus overthrust derived from stable and Sr-isotope patterns. American Journal of Science, 302(6), 517–547. doi: 10.2475/ajs.302.6.517.CrossRefGoogle Scholar
  5. Badertscher, N. P., Beaudoin, G., Therrien, R., & Burkhard, M. (2002b). Glarus overthrust: A major pathway for the escape of fluids out of the Alpine orogen. Geology, 30(10), 875–878. doi: 10.1130/0091-7613(2002)0302.0.CO;2.CrossRefGoogle Scholar
  6. Badertscher, N. P., & Burkhard, M. (2000). Brittle-ductile deformation in the Glarus thrust Lochseiten (LK) calc-mylonite. Terra Nova, 12(6), 281–288. doi: 10.1046/j.1365-3121.2000.00310.x.CrossRefGoogle Scholar
  7. Burkhard, M., Kerrich, R., Maas, R., & Fyfe, W. S. (1992). Stable and Sr-isotope evidence for fluid advection during thrusting of the Glarus nappe (Swiss Alps). Contributions to Mineralogy and Petrology, 112(2–3), 293–311. doi: 10.1007/BF00310462.CrossRefGoogle Scholar
  8. Butler, R. W. H. (1982). The terminology of structures in thrust belts. Journal of Structural Geology, 4(3), 239–245. doi: 10.1016/0191-8141(82)90011-6.CrossRefGoogle Scholar
  9. Calcagno, P., Chilès, J. P., Courrioux, G., & Guillen, A. (2008). Geological modelling from field data and geological knowledge Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1–4), 147–157. doi: 10.1016/j.pepi.2008.06.013.CrossRefGoogle Scholar
  10. Calcagno, P., Courrioux, G., Guillen, A., Fitzgerald, D., & McInerney, P. (2006). How 3D implicit geometric modelling helps to understand Geology: The 3D GeoModeller methodology. Society for Mathematical Geology International Congress, 11, S14–06.Google Scholar
  11. Dielforder, A., Vollstaedt, H., Vennemann, T., Berger, A., & Herwegh, M. (2015). Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex. Nature Communications, 6, 7504. doi: 10.1038/ncomms8504.CrossRefGoogle Scholar
  12. Ebert, A., Herwegh, M., & Pfiffner, A. (2007). Cooling induced strain localization in carbonate mylonites within a large-scale shear zone (Glarus thrust, Switzerland). Journal of Structural Geology, 29(7), 1164–1184. doi: 10.1016/j.jsg.2007.03.007.CrossRefGoogle Scholar
  13. Escher von der Linth, A. (1842). Panorama vom Tälchen ob Seeli N Panixerpass gegen E (Vorab), Federzeichnung, geologisches Kolorit, aus 3 Blättern zusammengesetzt, Format: 127:610 mm. ETH-Bibliothek, University Archives, Hs 4c:103. doi: 10.7891/e-manuscripta-2802.
  14. Forster, M. A., & Lister, G. S. (2008). Tectonic sequence diagrams and the structural evolution of schists and gneisses in multiply deformed terranes. Journal of the Geological Society, 165(5), 923–939. doi: 10.1144/0016-76492007-016.CrossRefGoogle Scholar
  15. Franks, S., & Trumpy, R. (2005). The sixth international geological congress: Zurich, 1894. Episodes, 28(3), 187–192.Google Scholar
  16. Frehner, M., & Exner, U. (2014). Strain and foliation refraction patterns around buckle folds. Geological Society, London, Special Publications, 394, 21–37. doi: 10.1144/SP394.4.CrossRefGoogle Scholar
  17. Funk, H., Labhart, T., Milnes, A. G., Pfiffner, O. A., Schaltegger, U., Schindler, C., et al. (1983). Bericht über die Jubiläumsexkursion “Mechanismus der Gebirgsbildung” der Schweizerischen Geologischen Gesellschaft in das ost- und zentralschweizerische Helvetikum und in das nördliche Aarmassiv vom 12. bis 17. September 1982. Eclogae Geologicae Helvetiae, 76(1), 91–123. doi: 10.5169/seals-165354.Google Scholar
  18. Gasser, D., & den Brok, B. (2008). Tectonic evolution of the Engi Slates, Glarus Alps, Switzerland. Swiss Journal of Geosciences, 101(2), 311–322. doi: 10.1007/s00015-008-1258-0.CrossRefGoogle Scholar
  19. Herwegh, M., Hürzeler, J.-P., Pfiffner, O. A., Schmid, S. M., Abart, R., & Ebert, A. (2008). The Glarus thrust: Excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14–16. 09. 2006). Swiss Journal of Geosciences, 101(2), 323–340. doi: 10.1007/s00015-008-1259-z.CrossRefGoogle Scholar
  20. Hürzeler, J.-P., & Abart, R. (2008). Fluid flow and rock alteration along the Glarus thrust. Swiss Journal of Geosciences, 101(2), 251–268. doi: 10.1007/s00015-008-1265-1.CrossRefGoogle Scholar
  21. Kempf, O., & Pfiffner, O. A. (2004). Early Tertiary evolution of the North Alpine Foreland Basin of the Swiss Alps and adjoining areas. Basin Research, 16(4), 549–567. doi: 10.1111/j.1365-2117.2004.00246.x.CrossRefGoogle Scholar
  22. Lajaunie, C., Courrioux, G., & Manuel, L. (1997). Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Mathematical Geology, 29(4), 571–584. doi: 10.1007/BF02775087.CrossRefGoogle Scholar
  23. Letsch, D. (2011). Arnold Eschers Sicht der Glarner Überschiebung. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 156, 29–38.Google Scholar
  24. Letsch, D. (2014). The Glarus double fold: A serious scientific advance in mid nineteenth century Alpine Geology. Swiss Journal of Geosciences, 107(1), 65–80. doi: 10.1007/s00015-014-0158-8.CrossRefGoogle Scholar
  25. Letsch, D., Winkler, W., von Quadt, A., & Gallhofer, D. (2014). The volcano-sedimentary evolution of a post-Variscan intramontane basin in the Swiss Alps (Glarus Verrucano) as revealed by zircon U-Pb age dating and Hf isotope geochemistry. International Journal of Earth Sciences, 104(1), 123–145. doi: 10.1007/s00531-014-1055-0.CrossRefGoogle Scholar
  26. Lihou, J. C. (1996). Structure and deformational history of the Infrahelvetic flysch units, Glarus Alps, eastern Switzerland. Eclogae Geologicae Helvetiae, 89(1), 439–460. doi: 10.5169/seals-167909.Google Scholar
  27. Maxelon, M., Renard, P., Courrioux, G., Brändli, M., & Mancktelow, N. (2009). A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units. Computers and Geosciences, 35(3), 644–658. doi: 10.1016/j.cageo.2008.06.005.CrossRefGoogle Scholar
  28. McInerney, P., Guillen, A., Courrioux, G., Calcagno, P., & Lees, T. (2005). Building 3D geological models directly from the data? A new approach applied to Broken Hill, Australia. U.S. Geological Survey Open-File Report, 2005–1428, 119–130.Google Scholar
  29. Milnes, A. G., & Pfiffner, O. A. (1977). Structural development of the infrahelvetic complex, eastern Switzerland. Eclogae Geologicae Helvetiae, 70(1), 83–95. doi: 10.5169/seals-164615.Google Scholar
  30. Mulchrone, K. F., & Meere, P. A. (2007). Strain refraction, viscosity ratio and multi-layer deformation: A mechanical approach. Journal of Structural Geology, 29(3), 453–466. doi: 10.1016/j.jsg.2006.10.004.CrossRefGoogle Scholar
  31. Oberholzer, J. (1933). Geologie der Glarneralpen. Bern: A. Francke AG.Google Scholar
  32. Oberholzer, J. (1942). Geologische Karte des Kantons Glarus, 1:50,000, including explanatory notes, Geological Special Map 117. Federal Office of Topography (swisstopo).Google Scholar
  33. Pfiffner, O. A. (1978). Der Falten- und Kleindeckenbau im Infrahelvetikum der Ostschweiz. Eclogae Geologicae Helvetiae, 71(1), 61–84. doi: 10.5169/seals-164718.Google Scholar
  34. Pfiffner, O. A. (1982). Deformation mechanisms and flow regimes in limestones from the Helvetic zone of the Swiss Alps. Journal of Structural Geology, 4(4), 429–442. doi: 10.1016/0191-8141(82)90034-7.CrossRefGoogle Scholar
  35. Pfiffner, O. A. (1986). Evolution of the North Alpine Foreland Basin in the Central Alps. Special Publications of the International Association of Sedimentologists, 8, 219–228. doi: 10.1002/9781444303810.ch11.Google Scholar
  36. Pfiffner, O. A. (1992). Zur Tektonik des Helvetikums im Querschnitt der Ostschweiz: Bericht zur Exkursion der Schweizerischen Geologischen Gesellschaft vom 8. und 9. Oktober 1991. Eclogae Geologicae Helvetiae, 85(1), 235–244. doi: 10.5169/seals-167004.Google Scholar
  37. Pfiffner, O. A. (2014). Geology of the Alps (2nd ed.). Hoboken: Wiley Blackwell.Google Scholar
  38. Pfiffner, O. A., Burkhard, M., Hänni, R., Kammer, A., Klingfield, R., Mancktelow, N., et al. (2011). Structural Map of the Helvetic Zone of the Swiss Alps, 1:100’000, including explanatory notes, Geological Special Map 128. Federal Office of Topography (swisstopo).Google Scholar
  39. Poulet, T., Veveakis, M., Herwegh, M., Buckingham, T., & Regenauer-Lieb, K. (2014). Modeling episodic fluid-release events in the ductile carbonates of the Glarus thrust. Geophysical Research Letters, 41(20), 7121–7128. doi: 10.1002/2014GL061715.CrossRefGoogle Scholar
  40. Rahn, M. K., & Grasemann, B. (1999). Fission track and numerical thermal modeling of differential exhumation of the Glarus thrust plane (Switzerland). Earth and Planetary Science Letters, 169(3–4), 245–259. doi: 10.1016/S0012-821X(99)00078-3.CrossRefGoogle Scholar
  41. Rahn, M. K., Hurford, A. J., & Frey, M. (1997). Rotation and exhumation of a thrust plane: Apatite fission-track data from the Glarus thrust, Switzerland. Geology, 25(7), 599–602. doi: 10.1130/0091-7613(1997)0252.3.CO;2.CrossRefGoogle Scholar
  42. Sala, P., Pfiffner, O. A., & Frehner, M. (2014). The Alpstein in three dimensions: Fold-and-thrust belt visualization in the Helvetic zone, eastern Switzerland. Swiss Journal of Geosciences, 107(2–3), 177–195. doi: 10.1007/s00015-014-0168-6.CrossRefGoogle Scholar
  43. Schmid, S. M. (1975). The Glarus overthrust: Field evidence and mechanical model. Eclogae Geologicae Helvetiae, 68(2), 247–280. doi: 10.5169/seals-164386.Google Scholar
  44. Sinclair, H. D. (1992). Turbidite sedimentation during Alpine thrusting: The Taveyannaz sandstones of eastern Switzerland. Sedimentology, 39(5), 837–856. doi: 10.1111/j.1365-3091.1992.tb02156.x.CrossRefGoogle Scholar
  45. Treagus, S. H. (1983). A theory of finite strain variation through contrasting layers, and its bearing on cleavage refraction. Journal of Structural Geology, 5(3–4), 351–368. doi: 10.1016/0191-8141(83)90023-8.CrossRefGoogle Scholar
  46. Treagus, S. H. (1988). Strain refraction in layered systems. Journal of Structural Geology, 10(5), 517–527. doi: 10.1016/0191-8141(88)90038-7.CrossRefGoogle Scholar
  47. Trümpy, R. (1969). Die helvetischen Decken der Ostschweiz: Versuch einer palinspastischen Korrelation und Ansätze zu einer kinematischen Analyse. Eclogae Geologicae Helvetiae, 62(1), 105–142. doi: 10.5169/seals-163692.Google Scholar
  48. Trümpy, R. (1980). An outline of the geology of Switzerland. Basel: Wepf & Co.Google Scholar
  49. Trümpy, R. (1991). The Glarus nappes: A controversy of a century ago. In D. W. Müller, J. A. McKenzie, & H. Weissert (Eds.), Controversies in modern geology: Evolution of geological theories in sedimentology, earth history and tectonics (pp. 385–404). London: Academic Press.Google Scholar
  50. Trümpy, R., & Westermann, A. (2008). Albert Heim (1849–1937): Weitblick und Verblendung in der alpentektonischen Forschung. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 153, 67–79.Google Scholar
  51. Wyssling, L. E. (1950). Zur Geologie der Vorabgruppe. PhD Dissertation, ETH Zürich, 1807. doi: 10.3929/ethz-a-000090299.

Copyright information

© Swiss Geological Society 2016

Authors and Affiliations

  1. 1.Geological InstituteETH ZurichZurichSwitzerland
  2. 2.FS Geotechnik AGSt. GallenSwitzerland

Personalised recommendations