Swiss Journal of Geosciences

, Volume 108, Issue 1, pp 75–100 | Cite as

Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

  • W. Russell Alexander
  • Heini M. Reijonen
  • Ian G. McKinley
Article

Abstract

The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research–medical–industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term ‘natural analogue’ has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material.

Keywords

Radioactive waste disposal Evaluation of long-term safety Repository design Natural systems 

References

  1. Alexander, W. R. (Ed.). (1992). A natural analogue study of cement buffered hyperalkaline groundwaters and their interaction with a sedimentary host rock, I. Source term description and geochemical database validation. Nagra NTB 91-10, National Co-operative for the Disposal of Radioactive Wastes (Nagra), Wettingen, Switzerland.Google Scholar
  2. Alexander, W.R., & McKinley, I.G. (1999). The chemical basis of near-field containment in the Swiss high-level radioactive waste disposal concept. In R. Metcalfe, C. A. Rochelle (Eds.), Chemical Containment of Wastes in the Geosphere, Geol. Soc. Spec. Publ. No. 157 (pp. 47–69). London, UK: Geological Society.Google Scholar
  3. Alexander, W. R., & McKinley, L. E. (Eds.). (2007). Deep geological disposal of radioactive wastes (292 pp). Amsterdam: Elsevier.Google Scholar
  4. Alexander, W. R., & Milodowski, A. M. (Eds.). (2015). Cyprus Natural Analogue Project (CNAP) Phase IV Final Report. Posiva Working Report WR2014-02, Posiva Oy, Eurajoki, Finland.Google Scholar
  5. Alexander, W. R., & Neall, F. B. (2007). Assessment of potential perturbations to Posiva’s SF repository at Olkiluoto caused by construction and operation of the ONKALO facility. Posiva Working Report 2007-35, Posiva Oy, Eurajoki, Finland.Google Scholar
  6. Alexander, W. R., Gautschi, A., & Zuidema, P. (1998). Thorough testing of performance assessment models: the necessary integration of in situ experiments, natural analogues and laboratory work. Scientific Basis of Nuclear Waste Management XXI, 1013–1014.Google Scholar
  7. Alexander, W. R., Smith, P. A., & McKinley, I. G. (2003). Modelling radionuclide transport in the geological environment: a case study from the field of radioactive waste disposal. In E. M. Scott (Ed.), Modelling Radioactivity in the Environment (pp. 109–145). Amsterdam: Elsevier.Google Scholar
  8. Alexander, W. R. Arcilla, C. A., McKinley, I. G., Kawamura, H., Takahashi, Y. Aoki, K., & Miyoshi, S. (2008). A new natural analogue study of the interaction of low-alkali cement leachates and the bentonite buffer. Scientific Basis of Nuclear Waste Management XXXI, 493–500.Google Scholar
  9. Alexander, W. R., McKinley, I. G., Kawamura, H. (2014). The process of defining an optimal natural analogue programme to support national disposal programmes. Proceedings of the NEA-GRS Workshop on Natural Analogues for Safety Cases of Repositories in Rock Salt, 46 September, 2012, Braunschweig, Germany (pp. 29–44). NEA/OECD, Paris, France.Google Scholar
  10. Amme, M. (2002). Raman micro-spectrometric investigations of U02 alteration products: Natural analogues to alpha radiolysis effects. Uranium in the Aquatic Environment. Proceedings of the International Conference Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium Freiberg, Germany, 1521 September 2002, (pp. 385–394). Berlin: Springer.Google Scholar
  11. Baik, M. H., Park, T.-J., Kim, I. Y., Jeong, J., & Choi, K. W. (2015). Development of a natural analogue database to support the safety case of the Korean radioactive waste disposal program. Swiss Journal of Geosciences, 108, doi:10.1007//s00015-015-0182-3.
  12. Blowers, A., & Sundqvist, G. (Eds.). (2008). Participation in practice—radioactive waste management in an international perspective. Journal of Integrative Environmental Science 5, Special Issue on Radioactive Waste Management.Google Scholar
  13. Bossart, P., & Thury, M. (2007). Research in the Mont Terri Rock laboratory: quo vadis? Physics and Chemistry of the Earth, 32, 19–31.CrossRefGoogle Scholar
  14. Boulton, G. S., Slot T., Blessing, K., Glasbergen, P., Leijnse band, T, van Gijssel, K. (1993). Deep circulation of groundwater in overpressured subglacial aquifers and its geological consequences. Quaternary Science Reviews. 12, 739–745.Google Scholar
  15. Boulton, G. S., Zatsepin, S., Maillot, B. (2001). Analysis of groundwater flow beneath ice sheets. SKB Technical Report TR-01-06, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  16. Bradbury, M. H., & Baeyens, B. (2003). Porewater chemistry in compacted re-saturated MX-80 bentonite. Journal of Contaminant Hydrology, 61, 329–338.CrossRefGoogle Scholar
  17. Bruno, J., & Casas, I. (1994). Spent fuel dissolution modelling. In Cramer, J. J, Smellie, J. A. T. (Eds.) Final report of the AECL/SKB Cigar Lake Analog Study. AECL Technical Report, AECL-10851, AECL, Chalk River, Canada.Google Scholar
  18. Chapman, N. A., Baldwin, T., Neall, F., Mathieson, J., & White, M. (2009). Design options for the UK’s HLW geological disposal facility. Radwaste Solutions, 16, 44–54.Google Scholar
  19. Chapman, N. A., McKinley, I. G., Penna Franca, E., Shea, M. J., & Smellie, J. A. T. (1992). The Poços de Caldas project: an introduction and summary of its implications for radioactive waste disposal. Journal of Geochemical Exploration, 45, 1–24.CrossRefGoogle Scholar
  20. Chapman, N. A., McKinley, I. G., Smellie, J. A. T. (1984). The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste. Nagra NTB 85-41, National Co-operative for the Disposal of Radioactive Wastes (Nagra), Wettingen, Switzerland.Google Scholar
  21. Clark, I. D., Dayal, R., & Khoury, H. N. (1994). The Maqarin (Jordan) natural analogue for 14C attenuation in cementitious barriers. Waste Management, 14, 467–477.CrossRefGoogle Scholar
  22. Côme, B., & Chapman, N. A. (Eds.). (1986). Natural analogue working group (NAWG). First meeting, Brussels, November 1985. CEC Nuclear Science and Technology Report, EUR 10315, Commission of the European Communities, Luxembourg.Google Scholar
  23. Cramer, J. J., & Smellie, J. A. T. (Eds.). (1994). Final report of the AECL/SKB Cigar Lake Analog Study. AECL Technical Report, AECL-10851, AECL, Chalk River, Canada.Google Scholar
  24. Crovisier, J.-L., Advocat, T., & Dussossoy, J.-C. (2003). Nature and role of natural alterations gels formed on the surface of ancient volcanic glasses (natural analogs of waste containment glasses). Journal of Nuclear Materials, 321, 91–109.CrossRefGoogle Scholar
  25. ENSI (2009). Guideline for Swiss Nuclear Installations. Specific design principles for deep geological repositories and requirements for the safety case. ENSI Report ENSI-G03/e, Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland.Google Scholar
  26. Ewing, R. C. (1979). Natural analogues: analogues for radioactive waste forms. Scientific Basis of Nuclear Waste Management, I, 57–68.Google Scholar
  27. Finch, R. J., & Ewing, R. C. (1991). Uraninite alteration in an oxidising environment and its relevance to the disposal of spent nuclear fuel. SKB Technical Report, TR 91-15, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  28. Freestone, I. C. (2005). The provenance of ancient glass through compositional analysis. Materials Research Society Symposium Proceedings, 852, 811–814.Google Scholar
  29. Gauthier-Lafayer, F., Holliger, P., & Blanc, P.-L. (1996). Natural fission reactors on the Franceville basin, Gabon: A review of conditions and results of a “critical event” in a geologic system. Geochimica et Cosmochimica Acta, 60, 4831–4852.CrossRefGoogle Scholar
  30. Harper, J., Hubbard, A., Ruskeeniemi, T., Claesson Liljedahl, L., Lehtinen, A., Booth, A., Brinkerhoff, D., Drake, H., Dow, C., Doyle, S., Engström, J., Fitzpatrik, A., Frape, S., Henkemans, E., Humphrey, N., Johnson, J., Jones, G., Joughin, I., Klint, K. E., Kukkonen, I., Kulessa, B., Landowski, C., Lindbäck, K., Makahnouk, M., Meierbachtol, T., Pere, T., Pedersen, K., Petterson, R., Pimentel, S., Quincey, D., Tullborg, E.-L., & van As, D. (2012). The Greenland Analogue Project Yearly Report 2010. Posiva Working Report WR2012-16, Posiva Oy, Eurajoki, Finland.Google Scholar
  31. Havlova, V., Laciok, A., Cervinka, R., & Vokal, A. (2007). Analogue evidence relevant to UK HLW glass waste forms. Nirex Report 509009, RWM Ltd, Harwell, UK.Google Scholar
  32. Hellmuth, K.-H. (1991a). The existence of native iron—implications for nuclear waste management, Part I: evidence from existing knowledge. Finnish Centre for Radiation and Nuclear Safety, STUK-B-VALO 67, Helsinki, Finland.Google Scholar
  33. Hellmuth, K.-H. (1991b). The existence of native iron—implications for nuclear waste management, Part II: evidence from investigation of samples of native iron. Finnish Centre for Radiation and Nuclear Safety, STUK-B-VALO 68, Helsinki, Finland.Google Scholar
  34. IAEA (1994). Safety indicators in different time frames for the safety assessment of underground radioactive waste repositories: first report of the INMAC subgroup on principles and criteria for radioactive waste disposal. IAEA Technical Report, 767. IAEA, Vienna, Austria.Google Scholar
  35. IAEA (2003). IAEA radioactive waste management glossary, 2003. IAEA STI/PUB/1155. IAEA, Vienna, Austria.Google Scholar
  36. IAEA (2005). Anthropogenic analogues for geological disposal of high level and long lived waste. IAEA Technical Document 1481. IAEA, Vienna, Austria.Google Scholar
  37. IAEA (2009). Classification of radioactive waste. IAEA Safety Standards Series. No. GSG-1. IAEA, Vienna, Austria.Google Scholar
  38. IAEA (2011). Geological disposal facilities for radioactive waste. IAEA Safety Standards Series. No. SSG-14. IAEA, Vienna, Austria.Google Scholar
  39. IAEA (2012). The safety case and safety assessment for the disposal of radioactive waste. IAEA Safety Standards Series, Specific Safety Guide No. SSG-23, STI/PUB/1553. IAEA, Vienna, Austria.Google Scholar
  40. JAEA (2000). H12: Second progress report on R&D for the geological disposal of HLW in Japan. JNC Report TN1410 2000-001, JAEA, Tokai, Japan.Google Scholar
  41. JAEA (2005). H17: Development and management of the technical knowledge base for the geological disposal of HLW—Knowledge Management Report. JNC Report TN1400 2005-022, JAEA, Tokai, Japan.Google Scholar
  42. JAEA (2007). Second progress report on research and development for TRU waste disposal in Japan: Repository design, safety assessment and means of implementation in the generic phase. JAEA Review 2007-010/FEPC TRU-TR2-2007-01, JAEA, Tokai, Japan.Google Scholar
  43. Johnson, A. B., & Francis, B. (1980). Durability of metals from archaeological objects, metal meteorites and native metals. Battelle Pacific Northwest Laboratory Report PNL-3198, PNL, Washington State, USA.Google Scholar
  44. Johnson, L., Ferry, C., Poinssot, C., & Lovera, P. (2005). Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal. Part I: Assessment of the instant release fraction. Journal of Nuclear Materials, 346, 56–65.CrossRefGoogle Scholar
  45. Jull, S. P., & Lees, T. P. (1990). Studies of historic concrete. CEC Nuclear Science and Technology Report EUR 12972. Commission of the European Communities, Luxembourg.Google Scholar
  46. King, F. (1995). A natural analogue for the long-term corrosion of copper nuclear waste containers—reanalysis of a study of a bronze cannon. Applied Geochemistry, 10, 477–487.Google Scholar
  47. Linklater, C. M. (Ed.). (1998). A natural analogue study of cement buffered, hyperalkaline groundwaters and their interaction with a repository host rock II. Nirex Science Report, S-98-003, RWM Ltd, Harwell, UK.Google Scholar
  48. Louvat, D., Michaud, V., & von Maravic, H. (Eds.). (1998). Proceedings of the 2nd EC-CEA Oklo Phase II Workshop, June, 16-18, 1998, Helsinki, Finland. EUR Report Series 19116. Commission of the European Communities, Luxemburg.Google Scholar
  49. Mazurek, M., Alexander, W. R., & MacKenzie, A. B. (1996). Contaminant retardation in fractured shales: matrix diffusion and redox front entrapment. Journal of Contaminant Hydrology, 21, 71–84.CrossRefGoogle Scholar
  50. Mazurek, M., Gautschi, A., Marschall, P., Alexander, W. R., Vigneron, G., Lebon, P., & Delay, J. (2006). Transferability of features and processes from underground rock laboratories and natural analogues—use for supporting the Swiss and French Safety Cases in argillacaeous formations. Proceedings of the AMIGO II workshop, NEA, Paris, 2005 (pp. 53–71). NEA/OECD, Paris, France.Google Scholar
  51. McGinnes, D. F. (2007). Waste sources and classification. In W. R. Alexander, L. E. McKinley (Eds.), Deep Geological Disposal of Radioactive Wastes (pp. 8–40). Amsterdam: Elsevier.Google Scholar
  52. McKinley, I. G. (1989). Applying natural analogues in predictive performance assessment (1): principles and requirements; (2): examples and discussions. Risk analysis in nuclear waste management (pp. 357–396). Amsterdam: Klewer Academic Publications.Google Scholar
  53. McKinley, I. G., & Alexander, W. R. (1992). A review of the use of natural analogues to test performance assessment models of a cementitious near field. Waste Management, 12, 253–259.CrossRefGoogle Scholar
  54. McKinley, I. G., & Alexander, W. R. (2009). Coastal repositories. In C. B. Conner, N. A. Chapman, L. J. Conner (Eds.), Volcanism, Tectonism and the Siting of Nuclear Facilities (pp. 509–526). Cambridge: Cambridge University Press.Google Scholar
  55. McKinley, I. G., Alexander, W. R., & Blaser, P. C. (2007). Development of geological disposal concepts. In W. R. Alexander, L. E. McKinley (Eds.), Deep Geological Disposal of Radioactive Wastes (pp. 41–76). Amsterdam: Elsevier.Google Scholar
  56. McKinley, I. G., Kawamura, H., Hardie, S. M. L., Klein, E., Beattie, T. (2015). Key natural analogue input required to build a safety case for direct disposal of spent nuclear fuel in Japan. Swiss Journal of Geosciences, 108, doi:10.1007//s00015-015-0186-3.
  57. Metcalfe R. & Walker C. (2004). Proceedings of the International Workshop on Bentonite-Cement Interaction in Repository Environments, 14–16 April 2004, Tokyo, Japan. NUMO Technical Report NUMO-TR-04-05. Tokyo, Japan: NUMO.Google Scholar
  58. Middleton, J. H. (1888). On the chief methods of construction used in ancient Rome. Archaeologie LI, 41–60.Google Scholar
  59. Miller, W. M., Alexander, W. R., Chapman, N. A., McKinley, I. G., Smellie, J. A. T. (1994). Natural Analogue Studies in the Geological Disposal of Radioactive Wastes. Studies in Environmental Science 57 (395 pp). Amsterdam: Elsevier.Google Scholar
  60. Miller, W. M., Alexander, W. R., Chapman, N. A., McKinley, I. G., & Smellie, J. A. T. (2000). Geological Disposal of Radioactive Wastes and Natural Analogues. Waste Management Series, vol. 2 (316 pp). Amsterdam: Pergamon.Google Scholar
  61. Milnes, A. G. (1985). Geology and Radwaste (328 pp.). London: Academic Press.Google Scholar
  62. Milodowski, A. E., Nancarrow, P. H. A., & Spiro, B. (1989). A mineralogical and stable isotope study of natural analogues of Ordinary Portland Cement (OPC) and CaO–SiO2–H2O (CSH) compounds. United Kingdom Nirex Safety Studies Report, NSS/R240. RWM Ltd, Harwell, UK.Google Scholar
  63. Milodowski, A. E., Styles M. T., Horstwood, M. S. A., Kemp, S. J. (2002). Alteration of uraniferous and native copper concretions in the Permian mudrocks of south Devon, United Kingdom. SKB Technical Report TR-02-09, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  64. Milodowski, A. E., Tullborg, E.-L., Buil, B., Gómez, P., Turrero, M.-J., Haszeldine, S., England, G., Gillespie, M. R., Torres, T., Ortiz, J. E., Zachariáš, J., Silar, J., Chvátal, M., Strnad, L., Šebek, O., Bouch, J. E., Chenery, S. R., Chenery, C., Shepherd, T. J., & McKervey, J. A. (2005). Application of mineralogical, petrological and geochemical tools for evaluating the palaeohydrogeological evolution of the PADAMOT study sites. PADAMOT Project Technical Report WP2. RWM Ltd, Harwell, UK.Google Scholar
  65. NEA (2004). Post-closure safety cases for geological repositories. Nature and Purpose. OECD/NEA report 3679, Paris, France.Google Scholar
  66. NEA (2009). Natural tracer profiles across argillaceous formations. The CLAYTRAC Project. OECD/NEA, Paris, France.Google Scholar
  67. NEA (2012). The evolving role and image of the regulator in radioactive waste management: Trends over two decades. NEA Report 7083. NEA/OECD, Paris, France.Google Scholar
  68. NEA (2013). The nature and purpose of the post-closure safety cases for geological repositories. Radioactive Waste Management Report NEA/RWM/R(2013)1, OECD/NEA, Paris, France.Google Scholar
  69. NEA (2014b). The safety case for deep geological disposal of radioactive waste: 2013 state of the art. Symposium Proceedings 7–9 Octiber 2013, Paris, France. Radioactive Waste Management Report NEA/RWM/R(2013)9, OECD/NEA, Paris, France. http://www.oecd-nea.org/rwm/docs/2013/rwm-r2013-9.pdf.
  70. Noseck, U., Wolf, J., Steininger, W., Miller, W. M. (2015). Identification and applicability of analogues for a safety case for a HLW repository in evaporites: results from a NEA workshop. Swiss Journal of Geosciences, 108, doi:10.1007//s00015-015-0183-2.
  71. Oleson, J. P., & Branton, G. (1992). The technology of King Herod’s harbour, Caesarea Papers, Straton’s Tower, Herod’s Harbour, and Roman and Byzantine Caesarea. Journal of Roman Archaeology, Supplement, 5, 49–67.Google Scholar
  72. Pate, S. M., McKinley, I. G., Alexander, W. R. (1994). Use of natural analogue test cases to evaluate a new performance assessment TDB. CEC Report EUR15176EN. Commission of the European Communities, Luxembourg.Google Scholar
  73. Petit, J. C. (1992). Reasoning by analogy: Rational foundation of natural analogue studies. Applied Geochemistry, Supplimentary Issue, 1, 9–12.CrossRefGoogle Scholar
  74. Plant, J., Simpson, P. R., Smith, B., & Windley, B. F. (1999). Uranium ore deposits: products of the radioactive earth. In P. C. Burns, R. Finch (Eds.) Reviews in Mineralogy, 38, (pp. 255–320). Uranium: Mineralogy, Geochemistry and the Environment. Washington: Mineralogical Society of America.Google Scholar
  75. Posiva (2012). Safety case for the disposal of spent nuclear fuel at Olkiluoto—design basis 2012. Posiva Report POSIVA 2012-03, Posiva Oy, Eurajoki, Finland.Google Scholar
  76. Posiva (2013a). Safety case for the disposal of spent nuclear fuel at Olkiluoto—complementary considerations 2012. Posiva Report POSIVA 2012-11, Posiva Oy, Eurajoki, Finland.Google Scholar
  77. Posiva (2013b). Safety case for the disposal of spent nuclear fuel at Olkiluoto—performance assessment 2012. Posiva Report POSIVA 2012-04, Posiva Oy, Eurajoki, Finland.Google Scholar
  78. Raiko, H. (2013). Canister design 2012. Posiva Report POSIVA 2012-13, Posiva, Eurajoki, Finland.Google Scholar
  79. Reijonen, H. M., & Alexander, W. R. (2015). Bentonite analogue research related to geological disposal of radioactive waste: current status and future outlook. Swiss Journal of Geosciences, 108, doi:10.1007//s00015-015-0185-0.
  80. Reijonen, H. M., Alexander, W. R., Marcos, N., & Lehtinen, A. (2015). Complementary considerations in the safety case for the deep repository at Olkiluoto, Finland: support from natural analogues. Swiss Journal of Geosciences, 108, doi:10.1007//s00015-015-0181-4.
  81. Savage, D. (Ed.). (1995). The Scientific and Regulatory Basis for the Geological Disposal of Radioactive Waste (437 pp). London: Wiley.Google Scholar
  82. Schaefers, A., & Fahland, S. (Eds.). (2014). Proceedings of the International Conference on the Performance of Engineered Barriers (Physical and Chemical Properties, Behaviour & Evolution). February 67, 2014, Hannover, Germany. BGR (Bundesanstalt für Geowissenschaften und Rohstoffe), Hannover, Germany.Google Scholar
  83. Sidborn, M., Marsic, N., Crawford, J., Joyce, S., Hartley, L., Idiart, A., de Vries, L. M., Maia, F., Molinero, J., Svensson, U., Vidstrand, P., Alexander, W. R. (2014). Potential alkaline conditions for deposition holes of a repository in Forsmark as a consequence of OPC grouting. SKB Project Report R-12-17, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  84. SKB (2011). Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project (updated 2012-12). SKB Technical Report TR-11-01, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  85. SKB (2014). Safety analysis for SFR. Long-term safety. Main report for the safety assessment SR-PSU. SKB TR-14-01, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  86. Smellie, J. A. T. (Ed.). (1998). A natural analogue study of cement-buffered, hyperalkaline groundwaters and their interaction with a repository host rock. Phase III. SKB Technical Report TR 98-04, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  87. Smellie, J. A. T., & Karlsson, F. (Eds.). (1996). The Cigar Lake analogue project: a reappraisal of some key issues and their relevance to repository performance assessment. SKB Technical Report TR-96-08, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm, Sweden.Google Scholar
  88. Taylor, H. F. W. (1990). Cement Chemistry (459 pp). London: Academic Press.Google Scholar
  89. Thomassin, J. H., & Rassineux, F. (1992). Ancient analogues of cement-base materials: stability of calcium silicate hydrates. Applied Geochemistry, Supplementary Issue, 1, 137–142.CrossRefGoogle Scholar
  90. Umeki, H. (2007). Repository design. In W. R. Alexander, L. E. McKinley (Eds.), Deep Geological Disposal of Radioactive Wastes (pp. 112–143). Amsterdam: Elsevier.Google Scholar
  91. USNRC. (1957). The disposal of radioactive waste on land (52 pp). Washington: US National Research Council, National Academy Press.Google Scholar
  92. Vola, G., Gotti, E., Brandon, C., Oleson, J. P., & Hohlfelder, R. L. (2011). Chemical, mineralogical and petrographic characterization of Roman ancient hydraulic concretes cores from Santa Liberata, Italy, and Caesarea Palestinae, Israel. Periodico di Mineralogia, 80, 317–338.Google Scholar
  93. West, J. M., & McKinley, L. E. (2007). Building confidence in the safe disposal of radioactive waste. In W. R. Alexander, L. E. McKinley (Eds.), Deep Geological Disposal of Radioactive Wastes (pp. 227–249). Amsterdam: Elsevier.Google Scholar
  94. West, J. M., Alexander, W. R., Kaku, K., McKinley, I. G., Shimmura, A. (2002). Communication of nuclear power concepts to stakeholders—the use of nature’s own laboratories. Proceedings of NUCEF 2001Scientific Bases for Criticality Safety, Separation Process and Waste Disposal. 31 Oct to 2 Nov 2001, Tokai, Japan. Japan Atomic Energy Research Institute Report, JAERI Conf 2002-004, p. 4754, JAEA, Tokai, Japan.Google Scholar
  95. Witherspoon, P. A., & Bodvarsson, G. S. (Eds.). (2006). Geological challenges in radioactive waste isolation: fourth worldwide review. LBNL Report 59808, Lawrence Berkeley National Laboratory, University of California, Berkeley, USA.Google Scholar
  96. Wolf, J., & Noseck, N. (2015). Natural analogues for containment-providing barriers for a HLW repository in salt. Swiss Journal of Geosciences, 108, doi:10.1007/s00015-015-0184-1.

Copyright information

© Swiss Geological Society 2015

Authors and Affiliations

  • W. Russell Alexander
    • 1
  • Heini M. Reijonen
    • 2
  • Ian G. McKinley
    • 3
  1. 1.Bedrock GeosciencesAuensteinSwitzerland
  2. 2.Saanio & Riekkola OyHelsinkiFinland
  3. 3.MCM ConsultingBaden-DättwilSwitzerland

Personalised recommendations