Advertisement

Swiss Journal of Geosciences

, Volume 105, Issue 2, pp 121–152 | Cite as

The pioneer work of Bernard Kübler and Martin Frey in very low-grade metamorphic terranes: paleo-geothermal potential of variation in Kübler-Index/organic matter reflectance correlations. A review

  • Rafael Ferreiro MählmannEmail author
  • Ömer Bozkaya
  • Sébastien Potel
  • Ronan Le Bayon
  • Branimir Šegvić
  • Fernando Nieto
Article

Abstract

Low-temperature metamorphic petrology occupies the P–T field between sedimentary and metamorphic petrology. Two important pillars of low-temperature metamorphism are coal petrology and clay mineralogy. When low temperature petrology was established bridging a hiatus between the two classical geological disciplines of sedimentary geology and metamorphic petrology, geologists faced a need for the usage of different terminology tenets. Martin Frey and Bernard Kübler were two pioneers in low-grade metamorphic petrology. They focused their research on clarifying the relationships of clay mineralogy and organic petrology to metamorphic pressure (P) and temperature (T) conditions. The ultimate aim of M. Frey and B. Kübler was to establish a correlation between clay indices and organic parameters for different geodynamic setting and therefore for various pressure–temperature (P–T) conditions occurring in low grade metamorphic terranes. For this purpose, a special attention was addressed to the correlation between the Kübler-Index (KI) and vitrinite reflectance (VR). All these efforts are dedicated to estimate the P–T conditions and thus to gain insight into the geodynamic evolution of low-grade metamorphic terranes. B. Kübler and M. Frey honored here concentrated their studies to the Helvetic Central Alps area. The very low-grade Helvetic domain is therefore of basic interest of this paper. Ensuing the extensive compilation of data from the Helvetic domain, a reinterpretation of Kübler and Frey’s research is presented in the light of last decade’s scientific progress. A comprehensive dataset available enables to discriminate many factors influencing the Kübler-Index and organic-matter reflectance alongside to time, temperature and pressure. The correlation is restricted to the KI and organic matter reflectance (mostly VR) because most of the studies used both methods. Organic matter reflectance (OMR) includes data from vitrinite reflectance and bituminite reflectance measurements. Geodynamics has important control on the KI/VR (OMR) correlation. Tectonic units having a similar geodynamic evolution are featured by the comparable KI/OMR trends, related to the particular paleo-geothermal conditions. Obviously the KI/OMR correlations provide a mean to characterise geothermal gradients and metamorphic very-low-grade pressure–temperature conditions. In terranes where high deformations rates are reported, exceeding the high anchizone conditions, strain promotes the kinetic effects of temperature and pressure on the KI versus OMR ratio.

Keywords

Illite Kübler-Index Vitrinite/organic matter reflectance correlation Paleo-geothermal conditions Very low-grade metamorphism Strain effects Central Alps 

Notes

Acknowledgments

One has to remember that all these kind of metamorphic researches based on vitrinite reflectance and Kübler-Index studies for determining P–T–t conditions in geological terranes were strongly promoted by Bernard Kübler and Martin Frey. The first author whishes specifically to appreciate the extensive and friendly e-mail discussions with Peter Árkai and Hanan Kisch. The manuscript was initiated by the invited key note lecture at EUROCLAY 2011 in Antalya on the Frey–Kübler Symposium and later finalised due to discussions with the coauthors. We like to thank the friendly expressed interest and kind support by the Turkish National Committee on Clay Science. The authors are indebted to Doug Robinson and Hanan J. Kisch as well as to Edwin Gnos for their corrections and advices.

References

  1. Abad, I. (2002). Diagenetic and very low-grade metamorphic processes in clastic rocks. Textural and chemical evolution of phyllosilicates. Ph.D. dissertation. Spain: University of Granada.Google Scholar
  2. Abad, I., Gutierrez-Alonso, G., Nieto, F., Gertner, I., Becker, A., & Cabero, A. (2003a). The structure and the phyllosilicates (chemistry, crystallinity and texture) of Talas Ala-Tau (Tien Shan, Kyrgyz Republic); comparison with more recent subduction complexes. Tectonophysics, 365, 103–127.CrossRefGoogle Scholar
  3. Abad, I., Mata, M. P., Nieto, F., & Velilla, N. (2001). The phyllosilicates in diagenetic-metamorphic rocks of the South Portuguese zone, southwestern Portugal. The Canadian Mineralogist, 39, 1571–1589.CrossRefGoogle Scholar
  4. Abad, I., Nieto, F., & Gutiérrez-Alonso, G. (2003b). Textural and chemical changes in slate-forming phyllosilicates across the external-internal zones transition in the low-grade metamorphic belt of the NW Iberian Variscan Chain. Schweizerische Mineralogische und Petrographische Mitteilungen, 83(1), 63–80.Google Scholar
  5. Abad, I., Nieto, F., Gutierrez-Alonso, G., Campo, M. D. O., Lopez-Munguira, A., & Velilla, N. (2006). Illitic substitution in micas of very low-grade metamorphic clastic rocks. European Journal of Mineralogy, 18(1), 59–69.CrossRefGoogle Scholar
  6. Abad, I., Nieto, F., Peacor, D. R., & Velilla, N. (2003c). Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuña (Spain). Clay Minerals, 38, 1–23.CrossRefGoogle Scholar
  7. Abad, I., Nieto, F., & Velilla, N. (2002). Chemical and textural characterisation of diagenetic to low-grade metamorphic phyllosilicates in turbidite sandstones of the South Portuguese zone: a comparison between metapelites and sandstones. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 303–324.Google Scholar
  8. Abart, R., & Ramseyer, K. (2002). Deformation induced quartz-fluid oxygen isotope exchange during low-grade metamorphism: An example from the Glarus thrust, E Switzerland. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 273–290.Google Scholar
  9. Allen, Ph.A. & Allen, J.R. (1990). Basin analysis. Oxford: Oxford Sciences.Google Scholar
  10. Allen, Ph.A. & Allen J.R. (2005). Basin analysis: principles and applications. New York: Blackwell.Google Scholar
  11. Aprahamian, J. (1974). La cristallinité de l’illite et les minéraux argileux en bordure des massifs cristallins externes de Belledonné et du Pelvoux (variations et relations possible avec des evénements tectoniques et métamorphiques alpins). Géologie Alpine, 50, 5–15.Google Scholar
  12. Árkai, P. (1991). Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of metamorphic Geology, 9, 723–734.CrossRefGoogle Scholar
  13. Árkai, P., Abad, I., Nieto, F., Németh, T., Horváth, P., Kis, V., Judik, K., & Jiménez-Millán J. (2012). Retrograde alteration of phyllosilicates in low-grade metapelites: A case study from the Szendrô Paleozoic, NE-Hungary (this issue).Google Scholar
  14. Árkai, P., Balogh, K. & Frey, M. (1997). The effect of tectonic strain on crystallinity, apparent mean crystallite size and lattice strain of phyllosilicates in low-temperature metamorphic rocks. A case study from the Glarus overthrust, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 77(1), 27–40.Google Scholar
  15. Árkai, P., Fenniniger, A., & Nagy, G. (2002a). Effects of lithology and bulk chemistry on phyllosilicate reaction progress in the low-T metamorphic Graz Paleozoic, Eastern Alps, Austria. European Journal of Mineralogy, 14, 673–686.CrossRefGoogle Scholar
  16. Árkai, P., Fenniniger, A., & Nagy, G. (2003). Chemical and structural evolution of chlorite and white K-micas in various lithologies of the low-grade Graz Paleozoic (Eastern Alps, Austria). Jahrbuch der Geologischen Bundesanstalt, 143(1), 23–38.Google Scholar
  17. Árkai, P., Ferreiro Mählmann, R., Suchý, V., Balogh, K., Sykorova, I., & Frey, M. (2002b). Possible effects of tectonic shear strain on phyllosilicates: a case study from the Kandersteg area, Helvetic Alps, Switzerland. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 273–290.Google Scholar
  18. Árkai, P., Merriman, R. J., Roberts, B., Peacor, R., & Toth, M. (1996). Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic to epizonal pelites. European Journal of Mineralogy, 8, 1119–1137.Google Scholar
  19. Árkai, P., Sassi, F.P. & Desmons, J. (2007). Very low- to low-grade metamorphic rocks. In D. Fettes & J. Desmons (Eds.), Metamorphic Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks (pp. 36–42). Cambridge: Cambridge University Press.Google Scholar
  20. Árkai, P., & Toth, M. N. (1983). Illite crystallinity: combined effects of domain size and lattice distortion. Acta Geologica Hungarica, 26, 341–358.Google Scholar
  21. Barker, Ch E. (1983). Influence of time on metamorphism of sedimentary organic matter in liquid dominated geothermal systems, western North America. Geology, 11, 384–388.CrossRefGoogle Scholar
  22. Barker, Ch E. (1988). Geothermics of petroleum systems: implications of the stabilization of kerogen thermal maturation after a geologically brief heating duration at peak temperature. U.S. Geological Survey Bulletin, 1870, 26–29.Google Scholar
  23. Barker, A. J. (1998). Introduction to metamorphic textures and microstructures (2nd ed.). Cheltenham: Stanley Thornes.CrossRefGoogle Scholar
  24. Barker, Ch E, & Goldstein, R. H. (1991). Fluid inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology, 18, 1003–1006.CrossRefGoogle Scholar
  25. Barker, Ch E, & Pawlewicz, M. H. (1986). The correlation of vitrinite reflectance with maximum paleotemperature in humic organic matter. In G. Buntebarth & L. Stegena (Eds.), Paleogeothermics (pp. 79–93). New-York: Springer.CrossRefGoogle Scholar
  26. Barker, Ch E, & Pawlewicz, M. H. (1993). An empirical determination of the minimum number of measurements needed to estimate the mean random vitrinite reflectance of disseminated organic matter. Organic Geochemistry, 20, 643–651.CrossRefGoogle Scholar
  27. Battaglia, S., Leoni, L., & Sartori, F. (2004). The Kubler index in late diagenetic to low-grade metamorphic pelites: A critical comparison of data from 10 Å and 5 Å peaks. Clays and Clay Minerals, 52(1), 85–105.CrossRefGoogle Scholar
  28. Bauluz, B., Peacor, D. R., & González López, J. M. (2000). Transmission electron microscopy study of illitization in pelites from the Iberian Range, Spain, layer-by-layer replacement? Clays and Clay Minerals, 48, 64–74.CrossRefGoogle Scholar
  29. Belmar, M., Schmidt, S Th, Ferreiro Mählmann, R., Mullis, J., Stern, W. B., & Frey, M. (2002). Diagenesis, low-grade and contact metamorphism in the Triassic-Jurassic of the Vichuquén-Tilicura and Hualacén Gualleco basins, Coastal Range of Chile. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 375–392.Google Scholar
  30. Beyssac, O., Goffe, B., Chopin, C., & Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology, 20, 859–871.CrossRefGoogle Scholar
  31. Bostick, N.H., Cashman, S., McCollough, T.H., & Wadell, C.T. (1978). Gradients of vitrinite reflectance and present temperature in the Los Angeles and Ventura basins, California. In F. Oltz (Ed.), Symposium in geochemistry: Low temperature metamorphism of kerogen and clay minerals (pp. 65–96). California: SEPM Pacific Section.Google Scholar
  32. Bouma, A.M. (1969). Methods for the study of sedimentary structures. New York: Wiley.Google Scholar
  33. Bozkaya, Ö., Gürsu, S., & Göncüoğlu, M. C. (2006). Textural and mineralogical evidence for a Cadomian tectonothermal event in the eastern Mediterranean (Sandıklı-Afyon area, western Taurides, Turkey). Gondwana Research, 10, 301–315.CrossRefGoogle Scholar
  34. Bozkaya, Ö., & Yalçın, H. (2004). Diagenesis and very low-grade metamorphic evolution of clay mineral assemblages in Palaeozoic to early Mesozoic rocks of the Eastern Taurides, Turkey. Clay Minerals, 39, 481–500.CrossRefGoogle Scholar
  35. Bozkaya, Ö., Yalçin, H., & Göncüoğlu, M. C. (2002). Mineralogic and organic responses to stratigraphic irregularities: an example from the lower Paleozoic very low-grade metamorphic units of the Eastern Taurus Autochthon, Turkey. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 355–373.Google Scholar
  36. Bozkaya, Ö., Yalçin, H., & Göncüoğlu, M. C. (2012a). Diagenetic and very low-grade metamorphic characteristics of the Paleozoic units of the Istanbul Terrane (NW Turkey) (this issue).Google Scholar
  37. Bozkaya, Ö., Yalçın, H., & Göncüoğlu, M. C. (2012b). Mineralogic evidences of a mid-Paleozoic tectono-thermal event in the Zonguldak terrane, NW Turkey: Implications for the dynamics of some Gondwana-derived terranes during the closure of the Rheic Ocean. Canadian Journal of Earth Sciences, 49, 559–575.CrossRefGoogle Scholar
  38. Brack, P. (1981). Structures in the southwestern border of the Adamello intrusion (Alpi bresciani, Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 61(1), 37–50.Google Scholar
  39. Brack, P. (1984). Geologie der Intrusiva und Rahmengesteine des SW-Adamello. Ph.D. dissertation, Switzerland: ETH Zürich, Nr. 7612.Google Scholar
  40. Brime, C. (1999). Metamorpfismo de bajo grado: ¿diferencias en escala o diferencias en grado metamórfico? Trabajos de Geologia, 21, 61–66.Google Scholar
  41. Brime, C., Castro, M., & Valin, M. L. (2002). Recognizing illitization progress from diagenesis to very low-grade metamorphism in rocks of the Cantabrian Zone (Spain). In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 211–219.Google Scholar
  42. Brime, C., & Eberl, D. D. (2002). Growth mechanism of low-grade illites based on shapes of crystal thickness distributions. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 203–209.Google Scholar
  43. Brindley, G.W., & Brown, G. (1980). Crystal structures of clay minerals and their identification. Mineralogical Society Monograph, No: 5. London: Mineralogical Society.Google Scholar
  44. Bucher, K., & Frey, M. (1994). Petrogenesis of Metamorphic Rocks (6th ed.) Winkler’s textbook. Berlin: Springer.Google Scholar
  45. Bucher, K., & Frey, M. (2004). Petrogenesis of Metamorphic Rocks (7th ed.). Berlin: Springer.Google Scholar
  46. Buntenbarth, G., & Stegena, L. (1986). Paleogothermics. Lecture notes in earth sciences. Berlin: Springer.Google Scholar
  47. Burkhard, M., & Badertscher, N. (2001). Finite strain has no influence on the illite crystallinity of tectonized Eocene limestone breccias of the Morcles nappe, Swiss Alps. Clay Minerlas, 36(2), 171–180.Google Scholar
  48. Burkhard, M., & Goy-Eggenberger, D. (2001). Near vertical iso-illite-crystallinity surfaces croscutt the recumbent fold structure of the Morcles nappe, Swiss Alps. Clay Minerals, 36(2), 159–170.CrossRefGoogle Scholar
  49. Burkhard, M., Kerrich, R., & Fyfe, W. S. (1992). Stable and Sr-isotope evidence for fluid advection during thrusting of the Glarus nappe (Swiss Alps). Contribution to Mineralogy and Petrology, 112, 293–311.CrossRefGoogle Scholar
  50. Burrus, J. (1986). Thermal modeling in sedimentary basins. 1 st . IFP Exploration research conference. Paris: Carcance. Édicion Technip.Google Scholar
  51. Bustin, R. M., Ross, J. V., & Rouzaud, J. N. (1995). Mechanisms of graphite formation from kerogen: experimental evidence. International Journal of Coal Geology, 28, 1–36.CrossRefGoogle Scholar
  52. Carver, R.E. (1971). Procedures in sedimentary petrology. New York: Wiley.Google Scholar
  53. Ciulavu, M., Ferreiro Mählmann, R., Seghdi, A., Schmid, S.M., & Frey, M. (2008). Metamorphic evolution of a very low- to low-grade metamorphic core complex (Danubian window) in the South Carpathians (pp. 281–315). In S. Siegesmund, B. Fügenschuh & N. Froitzheim (Eds.), Tectonic Aspects of the Alpine-Dinaride-Carpathian System. Geological Society of London, Special Publication, 298.Google Scholar
  54. Colombo, A., & Tunesi, T. (1999). Alpine metamorphism of the Southern Alps west of the Giudicarie Line. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(1), 183–190.Google Scholar
  55. Coombs, D. S., Ellis, A. J., Fyfe, W. S., & Taylor, A. M. (1959). The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica Acta, 17(1), 53–107.CrossRefGoogle Scholar
  56. Cotter-Howells, J. D., Campbell, L. S., Valsami-Jones, E., & Batchelder, M. (2000). Environmental mineralogy: Microbial interactions, anthropogenic influences, contaminated land and waste management. Letchworth: Turpin.Google Scholar
  57. Dalla Torre, M., Ferreiro Mählmann, R., & Ernst, W. G. (1997). Experimental study on the pressure dependance of vitrinite maturation. Geochimica Cosmochimica Acta, 61(14), 2921–2928.CrossRefGoogle Scholar
  58. Dalla Torre, M., Livi, K. J. T., Veblen, D. R., & Frey, M. (1996). White K-mica evolution from phengite to muscovite in shales and shale matrix melange, Diablo Range, California. Contributions to Mineralogy and Petrology, 123, 390–405.CrossRefGoogle Scholar
  59. De Lapparent, L. (1923). Leçons de pétrographie. Paris: Masson et Cie.Google Scholar
  60. Degens, E. T. (1965). Geochemistry of sediments. Englewood Cliffs: Prentice-Hall.Google Scholar
  61. Demeny, A. (1989). Structural ordering of carbonaceous matter in penninic terranes. Acta Mineralogica-Petrographica, Szeged, 30, 103–113.Google Scholar
  62. Diessel, C. F. K., Brothers, R. N., & Black, P. M. (1978). Coalification and graphitization in high pressure schists in New Caledonia. Contribution to Mineralogy and Petrology, 68, 63–78.CrossRefGoogle Scholar
  63. Diessel, C.F.K. & Offler, R. (1975). Change in physical properties of coalifed and graphitized phytoclasts with grade of metamorphism. Neues Jahrbuch Mineralogischer Monatshefte, 1975(1), 11–26.Google Scholar
  64. Dietrich, V.J. (1969). Die Ophiolithe des Oberhalbsteins (Graubünden) und das Ophiolithmaterial der ostschweizerischen Molasseablagerungen ein petrographischer Vergleich. Europäische Hochschulschriften. Ph.D. dissertation, Switzerland: University Zürich., Bern:Herbert Lang & Cie AG.Google Scholar
  65. Do Campo, M., & Nieto, F. (2003). Transmission electron microscopy study of very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana formation (Cordillera Oriental, NW Argentina). Clay Minerals, 38(4), 459–481.CrossRefGoogle Scholar
  66. Dohrmann, R., Rüping, K. B., Kleber, K., Ufer, K., & Jahn, R. (2009). Variation of preferred orientation in oriented clay mounts as a result of sample preparation and composition. Clays and Clay Minerals, 57(6), 686–694.CrossRefGoogle Scholar
  67. Dunoyer De Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamophism: a review. Sedimentology, 15, 282–346.Google Scholar
  68. Dunoyer De Segonzac, G., & Bernoulli, D. (1976). Diagenèse et métamorphisme des argiles dans le Rhétien Sudalpin et Austroalpin (Lombardie et Grisons). Bulletin Société géologique de France, 7, 18(5), 1283–1293.Google Scholar
  69. Dunoyer De Segonzac, G., Ferrero, J., & Kübler, B. (1968). Sur la cristallinité de l’illite dans la diagénèse et l’anchimétamorphisme. Sedimentology, 10, 137–143.CrossRefGoogle Scholar
  70. Eberl, D. D., & Środoń, J. (1988). Ostwald ripening and interparticle-diffraction effects for illite crystals. American Mineralogist, 73, 1335–1345.Google Scholar
  71. Elliot, E. C., Edenfield, A. M., Wampler, J. M., Matsoff, G., & Long, Ph E. (1999). The kinetics of the smectite to illite transformation in Cretaceous bentonites, Cerro Negro, New Mexico. Clays and Clay Minerals, 47(3), 286–296.CrossRefGoogle Scholar
  72. Erdelbrock, K. (1994). Diagenese und schwache Metamorphose im Helvetikum der Ostschweiz (Inkohlung und Illit-“Kristallinität”). Ph.D. dissertation, Germany: RWTH Aachen.Google Scholar
  73. Ernst, W.G., & Ferreiro Mählmann, R (2004). Vitrinite alteration rate as a function of temperature, time, starting material, aqueous fluid pressure, and oxygen fugacity—Laboratory corroboration of prior work. In R.J. Hill, J. Leventhal, M.J. Aizenshtat, G. Baedecker, G. Claypool, R. Eganhouse, M.Goldhaber & K. Peters (Eds.), Geochemical Investigations in Earth and Space Sciences: A Tribute to Isaac R. Kaplan (pp. 341–357). The Geochemical Society, Publication, 9.Google Scholar
  74. Esquevin, J. (1969). Influence de la composition chimique des illites sur la cristallinité. Bulletin du Centres de Recherche de Pau., S.N.P.A., 3/1, 147–154.Google Scholar
  75. Essene, E. J., & Peacor, D. R. (1995). Clay Mineral thermometry; a critical perspective. Clays and Clay Minerals, 43, 540–553.CrossRefGoogle Scholar
  76. Ferreiro Mählmann, R. (1994). Zur Bestimmung von Diagenesehöhe und beginnender Metamorphose—Temperaturgeschichte und Tektogenese des Austroalpins und Süpenninikums in Vorarlberg und Mittelbünden. Ph.D. dissertation, Frankfurter geowissenschaftliche Arbeiten, Serie C, 14: University of Frankfurt.Google Scholar
  77. Ferreiro Mählmann, R. (1995). Das Diagenese-Metamorphose-Muster von Vitrinitreflexion und Illit-“Kristallinität” in Mittelbünden und im Oberhalbstein. Teil 1: Bezüge zur Stockwerktektonik. Schweizerische Mineralogische und Petrographische Mitteilungen, 75(1), 85–122.Google Scholar
  78. Ferreiro Mählmann, R. (1996). Das Diagenese-Metamorphose-Muster von Vitrinitreflexion und Illit-“Kristallinität” in Mittelbünden und im Oberhalbstein. Teil 2: Korrelation kohlenpetrographischer und mineralogischer Parameter. Schweizerische Mineralogische und Petrographische Mitteilungen, 76(1), 23–47.Google Scholar
  79. Ferreiro Mählmann, R. (2001). Correlation of very low-grade data to calibrate a thermal maturity model in a nappe tectonic setting, a case study from the Alps. Tectonophysics, 334, 1–33.CrossRefGoogle Scholar
  80. Ferreiro Mählmann, R., & Frey, M. (2012). Standardisation, calibration and correlation of the Kübler-Index and the vitrinite/bituminite reflectance: an inter-laboratory and field related study. Swiss Journal of Geosciences (this issue).Google Scholar
  81. Ferreiro Mählmann, R., & Giger, M. (2012). The Arosa zone in Eastern Switzerland: Oceanic, syn-sedimentary, accretional and orogenic very low-grade patterns in a tectono-metamorphic mélange. Swiss Journal of Geosciences (this issue).Google Scholar
  82. Ferreiro Mählmann, R., Petrova, T., Pironon, J., Stern, W. B., Ghanbaja, J., Dubessy, J., & Frey, M. (2002). Transmission electron microscopy study of carbonaceous material in a metamorphic profile from diagenesis to amphibolite facies (Bündnerschiefer, Eastern Switzerland). In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 253–272.Google Scholar
  83. Flehmig, W. (1973). Kristallinität und Infrarotspektroskopie natürlicher dioktaedrischer Illite. Neues Jahrbuch Mineralogischer Monatshefte, 1973(3), 351–361.Google Scholar
  84. Flehmig, W., & Gehlken, P. L. (1989). Zum Seladonitmolekül in Illiten paläozoischer Sedimente, seiner genetischen Beziehung und mineralogischen Auswirkumg. Zeitschrift Deutsche Geologische Gesellschaft, 140, 343–353.Google Scholar
  85. Flehmig, W., & Langheinrich, G. (1974). Beziehung zwischen tektonischer Deformation und Illitkristallinität. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 146, 325–326.Google Scholar
  86. Folk, R. L. (1974). Petrology of sedimentary rocks. Austin: Hemphills.Google Scholar
  87. Foscolos, A.E. (1990). Catagenesis of argillaceous sedimentary rocks. In: Diagenesis (pp. 177–188). Geoscience Canada, Reprint Series 4.Google Scholar
  88. Frey, M. (1968). Die Metamorphose des Keupers vom Tafeljura bis zum Lukmanier-Gebiet (Veränderungen tonig-mergeliger Gesteine vom Bereich der Diagenese bis zur Staurolith-Zone). Ph.D. dissertation, Switzerland: University of Bern.Google Scholar
  89. Frey, M. (1969a). Die Metamorphose des Keupers vom Tafeljura bis zum Lukmanier-Gebiet (Veränderungen tonig-mergeliger Gesteine vom Bereich der Diagenese bis zur Staurolith-Zone). Beiträge zur geologischen Karte der Schweiz, 137, Bern.Google Scholar
  90. Frey, M. (1969b). A mixed-layer paragonite/phengite of low grade metamorphic origin. Contributions to Mineralogy and Petrology, 24, 63–65.CrossRefGoogle Scholar
  91. Frey, M. (1970). The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentology, 15, 261–279.CrossRefGoogle Scholar
  92. Frey, M. (1978). Progressiv low-grade metamorphism of a black shale formation, Central Swiss Alps, with special references to pyrophyllite and margarite bearing assemblages. Journal of Petrology, 19, 95–137.CrossRefGoogle Scholar
  93. Frey, M. (1986). Very low-grade metamorphism of the Alps an introduction. Schweizerische Mineralogische und Petrographische Mitteilungen, 66(1), 13–27.Google Scholar
  94. Frey, M. (1987a). Low temperature metamorphism. Glasgow and London: Blackie.Google Scholar
  95. Frey, M. (1987b). The reaction-isograd kaolinite + quartz = pyrophyllite + H2O, Helvetic Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 67(1), 1–11.Google Scholar
  96. Frey, M. (1988). Discontinuous inverse metamorphic zonation, Glarus Alps, Switzerland: evidence from illite “cristallinity” data. Schweizerische Mineralogische und Petrographische Mitteilungen, 68(1), 171–183.Google Scholar
  97. Frey, M., & Burkhard, M. (1992). Mineralogisch-Petrologische Exkursion zur progressiven Alpinen Metamorphose der Zentralalpen. Beihefte zum European Journal of Mineralogy, 4(2), 103–122.Google Scholar
  98. Frey, M., de Capitani, C., & Liou, J. G. (1991). A new perogenetic grid for low-grade metabasites. Journal of Metamorphic Geology, 9, 497–509.CrossRefGoogle Scholar
  99. Frey, M., Desmons, J., & Neubauer, F. (1999). Alpine Metamorphic Map 1:500 000. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(1), 1–4.Google Scholar
  100. Frey, M., & Ferreiro Mählmann, R. (1999). Alpine metamorphism of the Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(1), 135–154.Google Scholar
  101. Frey, M., Hunziker, C., Roggwiller, P., & Schindler, C. (1973). Progressive niedriggraddige Metamorphose glauconitführender Horizonte in den helvetischen Alpen der Ostschweiz. Contribution to Mineralogy and Petrology, 39, 185–218.CrossRefGoogle Scholar
  102. Frey, M., & Niggli, E. (1971). Illit-Kristallinität, Mineralfazien und Inkohlungsgrad. Schweizerische Mineralogische und Petrographische Mitteilungen, 51(1), 229–234.Google Scholar
  103. Frey, M., & Robinson, D. (1999). Low-grade metamorphism. Oxford: Blackwell Science.Google Scholar
  104. Frey, M., Teichmüller, M., Teichmüller, R., Mullis, J., Künzi, B., Breitschmid, A., et al. (1980). Very low-grade metamorphism in external parts of the Central Alps: illite crystallinity, coal rank and fluid inclusion data. Eclogae Geologicae Helvetiae, 73(1), 173–203.Google Scholar
  105. Gaupp, R. H., & Batten, D. J. (1985). Maturation of organic matter in Cretaceous strata of the Northern Calcareous Alps. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1985(3), 157–175.Google Scholar
  106. Gautier, D.L. (1986). Roles of organic matter in sediment diagenesis. Society of Economic Paleontologists and Mineralogists, Special Publications 38, Tulsa.Google Scholar
  107. Giorgetti, G., Memmi, I., & Peacor, D. R. (2000). Retarded illite crystallinity caused by streß-induced sub-graine boundaries in illite. Clay Minerals, 35, 693–708.CrossRefGoogle Scholar
  108. Grim, R.E. (1953). Clay mineralogy. New York: McGraw-Hill.Google Scholar
  109. Guedes, A., Valentim, B., Prieto, A. C., Rodrigues, S., & Noronha, F. (2010). Micro-Raman spectroscopy of collotelinite, fusinite and macrinite. International Journal of Coal Geology, 83, 415–422.CrossRefGoogle Scholar
  110. Guggenheim, S., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, A., Eberl, D. D., et al. (2002). Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the “Crystallinity Index”. Clay Minerals, 37, 389–393.CrossRefGoogle Scholar
  111. Harrassowitz, H. (1927). Anchimetamorphose, das Gebiet zwischen Oberflächen- und Tiefen-Umwandlung der Erdrinde. Berichte Oberhessische Gesellschaft für Natur Heilkunde Giessen, Naturwissenschaften, Abteilung, 12, 9–15.Google Scholar
  112. Herwegh, M., Hürzeler, J. P., Pfiffner, O. A., Schmid, S. M., Abart, R., & Ebert, A. (2008). The Glarus thrust: excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.-16.09.2006). Swiss Journal of Geosciences, 101(2), 323–340.CrossRefGoogle Scholar
  113. Hesse, R., & Ogunyomi, O. (1980). Präorogene Versenkungstiefe und Orogenese als Diagenesefaktoren für altpaläozoische Kontinentalrandbildungen der Nördlichen Appalachen in Quebec, Kanada. Geologische Rundschau, 69(2), 546–566.CrossRefGoogle Scholar
  114. Hillier, S., Mátyás, J., Matter, A., & Vasseur, G. (1995). Illite/smectite diagenesis and its variable correlation with vitrinite reflectance in the Pannonian basin. Clays and Clay Minerals, 43(2), 174–183.CrossRefGoogle Scholar
  115. Hoefs, J., & Frey, M. (1976). The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps. Geochimica et Cosmochimica Acta, 40, 945–951.CrossRefGoogle Scholar
  116. Huang, W. L., Longo, J. M., & Pevear, D. R. (1993). An experimentally derived kinetic model for smectite-to illite conversion and it use as a geothermometer. Clays and Clay Minerals, 41(2), 162–177.CrossRefGoogle Scholar
  117. Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Friedrichsen, H., Flehmig, W., et al. (1986). The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92, 157–180.CrossRefGoogle Scholar
  118. Hürzeler, J. P., & Abart, R. (2008). Fluid flow and rock alteration along the Glarus thrust. Swiss Journal of Geosciences, 101(2), 251–268.CrossRefGoogle Scholar
  119. Hutcheon, I.E. (1989). Short course in burial diagenesis. Short course handbook (vol. 15). Montreal: Mineralogical Association Canada.Google Scholar
  120. Issler, D. R. (1984). Calculation of organic maturation levels for offshore eastern Canada—Implications for general application of Lopatin’s method. Canadian Journal of Earth Sciences, 21, 477–488.CrossRefGoogle Scholar
  121. Jaboyedoff, M., Kübler, B., Stadelmann, P., & Thélin, P. (2001). An attempt to correlate HRTEM and XRD determination of coherent scattering domain size of illite-smectite interstratification using «illite crystallinity». Bulletin de Géologie de l’Université de Lausanne, Bulletin de la Société Vaudoise des Sciences Naturelles, 87(4), 305–319.Google Scholar
  122. Jaboyedoff, M., Kübler, B., & Thélin, P. (1999). An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite. Clay Minerals, 34, 601–617.CrossRefGoogle Scholar
  123. Jaboyedoff, M., & Thélin, P. (1996). New data on the low-grade metamorphism in the Briançonnais domain of the Prealps, western Switzerland. European Journal of Mineralogy, 8, 577–592.Google Scholar
  124. Jaboyedoff, M., & Thélin, P. (2002). PATISSIER: software to estimate the smectite content and number of consecutive illite layers in mixed-layer illite-smectite using illite-crystallinity data. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 221–228.Google Scholar
  125. Jasmund, K. (1951). Die silikatischen Tonminerale (2nd. ed., 1955). Weinheim: Verlag Chemie.Google Scholar
  126. Jasmund, K., & Lagaly, G. (1993). Tonminerale und Tone. Darmstadt: Steinkopff.Google Scholar
  127. Jiang, W. T., Peacor, D. R., Árkai, P., Toth, M., & Kim, J. W. (1997). TEM and XRD determination of crystallite size and lattice strain as a function of illite crystallinity in pelitic rocks. Journal of Metamorphic Geology, 15, 267–281.CrossRefGoogle Scholar
  128. Judik, K., Rantitsch, G., Rainer, T. M., Árkai, P., & Tomljenović, B. (2008). Alpine metamorphism of organic matter in metasedimentary rocks from Mt. Medvednica (Croatia). Swiss Journal of Geosciences, 101(3), 605–616.CrossRefGoogle Scholar
  129. Kahr, G., Frey, M., & Madsen, F. T. (1996). Thermoanalytical dehydroxylation of clays and combustion of organic compounds in a prograde metamorphic Liassic black shale formation, Central Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 76(1), 165–173.Google Scholar
  130. Kisch, H. J. (1966a). Zeolite facies and regional rank of bituminuous coal. Geological Magazine, 103, 414–422.CrossRefGoogle Scholar
  131. Kisch, H. J. (1966b). Carbonization of semi-anthracitic vitrinite by an analcime basanite sill. Economic Geology, 61, 1043–1063.CrossRefGoogle Scholar
  132. Kisch, H. J. (1968). Coal rank and lowest grade regional metamorphism in the southern Bowen Basin, Queensland, Australia. Geologie en Mijnbouw, 47, 28–36.Google Scholar
  133. Kisch, H.J. (1969). Coal-rank and burial metamorphic mineral facies (pp. 407–424). In P.A. Schenck, & I. Havenaar (Eds.), Advances in Organic Geochemistry, 1968: Oxford: Pergamon Press.Google Scholar
  134. Kisch, H.J. (1974). Anthracite and meta-anthracite cola ranks associated with “anchimetamorphism“ and “very-low-stage“ metamorphism. I, II, III. Proc K Ned Akad Wet, Amsterdam, Ser. B, 77(2), 81–118.Google Scholar
  135. Kisch, H. J. (1980a). Illite cristallinity and coal rank associated with lowest-grade metamorphism of Taveyanne greywacke in the Helvetic zone of the Swiss Alps. Eclogae Geologicae Helvetiae, 73, 753–777.Google Scholar
  136. Kisch, H. J. (1980b). Incipient metamorphism of Cambro-Silurian clastic rocks from the Jamtland Supergroup, central Scandinavian Caledonides, western Sweden: illite crystallinity and ‘vitrinite’ reflectance. Journal of the Geological Society, London, 137, 271–288.CrossRefGoogle Scholar
  137. Kisch, H. J. (1987). Correlation between indicators of very low grade metamorphism. In M. Frey (Ed.), Low temperature metamorphism (pp. 227–300). Glasgow: Blackie.Google Scholar
  138. Kisch, H.J. (1989). Discordant relationship between degree of very low-grade metamorphism and the development of slaty cleavage. In. J.S. Daly, R.A. Cliff & B.W.D. Yardles (Eds.), Evolution of metamorphic belts (pp. 173–185). London: Geological Society Special Publication London, 43.Google Scholar
  139. Kisch, H. J. (1991). Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9, 665–670.CrossRefGoogle Scholar
  140. Kisch, H. J., Árkai, P., & Brime, C. (2004). On the calibration of the illite Kübler-Index (illite „crystallinity”). Schweizerische Mineralalogische und Petrographische Mitteilungen, 84(2), 323–331.Google Scholar
  141. Kisch, H. J., & Frey, M. (1987). Appendix: Effect of sample preparation on the measured 10 Å peak width of illite (illite-“crystallinity”). In M. Frey (Ed.), Low temperature metamorphism (pp. 302–304). Glasgow: Blackie.Google Scholar
  142. Kisch, H.J., & Nijman, W. (2010). Metamorphic grade and gradient from white K-mica bearing sedimentary rocks in the Mosquito Creek Basin, east Pilbara Craton, western Australia. Precambrian Research, 176(1–4), 11–26.Google Scholar
  143. Koch, J. (1989). Inkohlung durch Reibungswärme im Ölschiefer von Schandelah. Erdöl & Kohle-Erdgas-Petrochemie-Hydrocarbontechnologi, 42, 485–488.Google Scholar
  144. Kossovskaya, A. G., Logvinenko, N. V., & Shutov, V. D. (1957). Stages of formation and alteration in terrigenous rocks (in Russian). Doklady Akademii Nauk SSSR, 116(2), 293–296.Google Scholar
  145. Kossovskaya, A. G., & Shutov, V. D. (1961). The correlation of zones of regional epigenesist and metagenesis in terrigenous and volcanic rocks. Doklady Akademii Nauk SSSR, 139(3), 732–736.Google Scholar
  146. Kossovskaya, A. G., & Shutov, V. D. (1963). Facies of regional epigenesis and metagenesis. Translation in: International Geology Review, 7(1965), 1157–1167.Google Scholar
  147. Kossovskaya, A. G., & Shutov, V. D. (1970). Main aspects of the epigenesis problem. Sedimentology, 15, 11–40.CrossRefGoogle Scholar
  148. Krumm, H. (1984). Anchimetamorphose im Anis und Ladin (Trias) der Nördlichen Kalkalpen zwischen Arlberg und Kaisergebirge—ihre Verbreitung und deren baugeschichtliche Bedeutung. Geologische Rundschau, 73(1), 223–257.CrossRefGoogle Scholar
  149. Krumm, H., Petschick, R., & Wolf, M. (1988). From diagenesis to anchimetamorphism, Upper Austroalpine sedimentary cover in Bavaria and Tyrol. Geodinamica Acta, 2, 33–47.Google Scholar
  150. Kübler, B. (1964). Les argiles, indicateurs de métamorphisme. Revue de l’Institut Français du Pétrole, 19, 1093–1112.Google Scholar
  151. Kübler, B. (1967). La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. Etages tectoniques. Colloques Neuchâtel, 1821 avril 1967, 105–122.Google Scholar
  152. Kübler, B. (1968). Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Bulletin Centre Recherche Pau, S.N.P.A., 2, 385–397.Google Scholar
  153. Kübler, B. (1984). Les indicateurs des transformations physiques et chimiques dans la diagénèse. Température et calorimétrie. In: Lagache, M. (Ed.). Thermométrie et barométrie géologiques. Société Francaise de minéralogie et de cristallographie, 2, 489–59.Google Scholar
  154. Kübler, B. (1990). “Cristallinity” de l’illite et mixed-layer: brève révision. Schweizerische Mineralogische und Petrographische Mitteilungen, 70(1), 89–93.Google Scholar
  155. Kübler, B., Betrixe, M.A., & Monnier, F. (1979a). Les premiers stades de la diagénèse organique et la diagénèse minérale: une tentative d’équivalence. 1ère partie: zonéographie par la maturation de la matière organique. Bulletin der Vereinigung Schweizerischer Petroleumgeologen. und Petroleumingenieure. 45/108, 1–22.Google Scholar
  156. Kübler, B., & Jaboyedoff, M. (2000). Illite Cristallinity. Comptes rendus de l’Académie des Sciences Paris Série II, 331, 75–89.Google Scholar
  157. Kübler, B., Pittion, J.-L., Héroux, Y., Charollais, J., & Weidmann, M. (1979b). Sur le pouvoir réflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et des Nappes préalpines, helvétiques et penniques. Eclogae Geologicae Helvetiae, 72(2), 347–373.Google Scholar
  158. Lanson, B. (1997). Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132–146.CrossRefGoogle Scholar
  159. Lanson, B., & Kübler, B. (1994). Experimental determination of coherent scattering domain size distribution of natural mica-like phases with the Warren-Averbach technique. Clays and Clay Minerals, 42, 489–494.CrossRefGoogle Scholar
  160. Larsen, G., & Chillingar, G. V. (1983). Diagenesis in sediments and sedimentary rocks (25A, 572 pp; 25B 579 pp). Amsterdam: Developments in Sedimentology, Elsevier.Google Scholar
  161. Le Bayon, R. (2012). Laboratory organic matter maturation at high pressures: Heat-up effect on vitrinite reflectance. Swiss Journal of Geosciences (this issue).Google Scholar
  162. Le Bayon, R., Adam, Ch., & Ferreiro Mählmann, R. (2012a). Experimentally determined pressure effects on vitrinite reflectance at 450 °C. International Journal of Coal Geology, 92, 69–81.CrossRefGoogle Scholar
  163. Le Bayon, R., Brey, G., Ernst, W. G., & Ferreiro Mählmann, R. (2007). Experimental kinetic study of carbonaceous material maturation: an appraisal of pressure and time effects on vitrinite reflectance at 400 °C. Geochimica Cosmochimica Acta, 71, 552.Google Scholar
  164. Le Bayon, R., Brey, G. P., Ernst, W. G., & Ferreiro Mählmann, R. (2011). Experimental kinetic study of organic matter maturation: Time and pressure effects on vitrinite reflectance at 400 °C. Organic Geochemistry, 42, 340–355.CrossRefGoogle Scholar
  165. Le Bayon, R., Buhre, St, Schmidt, B. C., & Ferreiro Mählmann, R. (2012b). Experimental organic matter maturation at 2 kbar: Heat-up effect to low temperatures on vitrinite reflectance. International Journal of Coal Geology, 92, 45–53.CrossRefGoogle Scholar
  166. Leeder, M.R. (1995). Sedimentology, process and product. London: Chapman and Hall.Google Scholar
  167. Levine, J. R., & Davis, A. (1989). Reflectance anisotropy of Upper Carboniferous coals in the Appalachian foreland basin, Pennsylvania, U.S.A. International Journal of Coal Geology, 13, 314–373.CrossRefGoogle Scholar
  168. Liou, J. G., de Capitani, C., & Frey, M. (1991). Zeolite equilibria in the system CaAl2Si2O8–NaAlSi3O8–SiO2–H2O. New Zealand Journal of Geology and Geophysics, 34, 293–301.CrossRefGoogle Scholar
  169. Liou, J. G., Shigenori, M., & Moonsup, C. (1987). Very-low grade metamorphism of volcanic and volcanoclastic roccks—Mineral assemblages and mineral facies. In M. Frey (Ed.), Low temperature metamorphism (pp. 59–113). Glasgow: Blackie.Google Scholar
  170. Littke, R. (1993). Deposition, diagenesis and weathering of organic matter-rich sediments. Lecture Notes in Earth Sciences (vol. 47).Google Scholar
  171. Littke, R., Urai, J. L., Uffmann, A. K., & Risvanis, F. (2012). Reflectance of dispers vitrinite in Palaeozoic rocks with and without cleavage: Implications for burial and thermal history modelling in the Devonian of Rursee area, northern Rhenish Massif, Germany. International Journal of Coal Geology,. doi: 10.1016/j.coal.2011.07.006.Google Scholar
  172. Logvinenko, N. V. (1956). On the late diagenesis (epigenesis) of Carboniferous rocks of the Donbass (in Russian). Akademii Nauk SSSR Doklady, 106(5), 889–892.Google Scholar
  173. Lopatin, N. V. (1971). Temperature and geologic time as factors in coalification (in Russian). Izvestiya Akademii Nauk SSSR Seriya Geologicheskaya, 3, 95–106.Google Scholar
  174. Mancktelow, N. S. (1985). The Simplon line: a major displacement zone in the western Lepontine Alps. Eclogae Geologicae Helvetiae, 78(1), 73–96.Google Scholar
  175. Mancktelow, N. S. (1990). The Simplon fault zone. Beiträge zur Geologischen Karte der Schweiz. Neue Folge, 163, 1–74.Google Scholar
  176. McIlreath, I.A., & Morrow, D.W. (1990). Diagenesis. Geoscience Canada, reprint series (vol. 4). The Runge Press, Ottawa.Google Scholar
  177. Meister, P. (1999). Zur Geologie der südwestlichen Ducankette zwischen Kleinducan und Alp Darlux (Graubünden, Schweiz). Unpublished diploma thesis, ETH Zürich.Google Scholar
  178. Merriman, R. J. (1991). Very low-grade metamorphism. Journal of Metamorphic Geology, Special Issue, 9(6), 663–790.CrossRefGoogle Scholar
  179. Merriman, R. J., & Frey, M. (1999). Patterns of very low-grade metamorphism in metapelitic rocks. In M. Frey & D. Robinson (Eds.), Low-grade metamorphism (pp. 61–107). Oxford: Blackwell Science.Google Scholar
  180. Merriman, R. J., & Peacor, D. R. (1999). Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In M. Frey & D. Robinson (Eds.), Low-grade metamorphism (pp. 10–60). Oxford: Blackwell Science.Google Scholar
  181. Merriman, R. J., Roberts, B., & Peacor, D. R. (1990). A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contributions to Mineralogy and Petrology, 106, 27–40.CrossRefGoogle Scholar
  182. Merriman, R. J., Roberts, B., Peacor, D. R., & Hirons, S. R. (1995). Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland. Journal of Metamorphic Geology, 13, 559–576.CrossRefGoogle Scholar
  183. Millot, P.G. (1970). Géologie des argiles altérations, sédimentologie, géochimie. Paris: Masson et Cie.Google Scholar
  184. Morrow, D.W., & Issler, D.R. (1993). Calculation of vitrinite reflectance from thermal histories: a comparison of some methods. American Association of Petroleum Geologists Bulletin, 77(4), 610–624.Google Scholar
  185. Mosar, J. (1988). Métamorphisme transporté dans les Préalpes. Schweizerische Mineralogische und Petrographische Mitteilungen, 68(1), 77–94.Google Scholar
  186. Mullis, J., Rahn, M. K., Schwer, P., de Capitani, C., Stern, W. B., & Frey, M. (2002). Correlation of fluid inclusion temperatures with illite “crystallinity” data and clay mineral chemistry in sedimentary rocks from the external part of the Central Alps. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 325–340.Google Scholar
  187. Naesser, N.D., & McCulloh, T.H. (1989). Thermal history of sedimentary basins. Berlin: Springer.Google Scholar
  188. Nieto, F., & Sanchez-Navas, A. (1994). A comparative XRD and TEM study of the physical meaning of the white mica «crystallinity» index. European Journal of Mineralogy, 6, 611–621.Google Scholar
  189. Nievergelt, P., Liniger, M., Froitzheim, N., & Ferreiro Mählmann, R. (1996). Early to Mid Tertiary crustal extension in the Central Alps: The Turba Mylonite Zone. (Eastern Switzerland). Tectonics, 15(2), 329–340.Google Scholar
  190. Niggli, E. (1960). Mineral-Zonen der alpinen Metamorphose in den Schweizer Alpen. International Geological Congress 21st., Copenhagen, 1960, part 13, pp. 132–138.Google Scholar
  191. Niggli, E., & Zwart, H.J. (1973). Metamorphic map of the Alps, scale 1:1 000 000. Subcommission for the cartography of the metamorphic belts of the world. Sheet 17 of the metamorphic map of Europe. Paris: Leiden/UNESCO.Google Scholar
  192. Oberhänsli, R., Bousquet, R, Engi, M., Goffé, B., Gosso, G., Handy, M., Häck, V., Koller, F., Lardeaux, J.M., Polino, R., Rossi, P., Schuster, R., Schwartz, S., & Spalla, M.I. (2004). Explanatory note to the map «metamorphic structure of the Alps, 1: 1’000’000». Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 149. Google Scholar
  193. Oltz, F. (1978). Syposium in geochemistry: Low temperature metamorphism of kerogen and clay minerals. Los Angeles: The Pacific Section Society of Economic Paleontologists and Mineralogists.Google Scholar
  194. Pagel, M., Braun, J. J., Disnar, J. R., Martinez, L., Renac, Ch., & Vasseur, G. (1997). Thermal history constraints from studies of organic matter, clay minerals, fluid inclusions, and apatite fission tracks at the Ardeche paleo-margin (BA1 drill hole, GPF Program), France. Journal of Sedimentary Research, 67(1), 235–245.Google Scholar
  195. Paproth, E., & Wolf, M. (1973). Zur paläogeographischen Deutung der Inkohlung im Devon und Karbon des nördlichen Rheinischen Schiefergebirges. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1, 469–493.Google Scholar
  196. Parker, A., & Sellwood, B.W. (1983). Sediment diagenesis. Dordrecht: D. Reidel.Google Scholar
  197. Petmecky, S., Meier, L., Reiser, H., & Littke, R. (1999). High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics, 304, 317–344.Google Scholar
  198. Petrova, T. V., Ferreiro Mählmann, R., Stern, W. B., & Frey, M. (2002). Application of combustion and TGA-DTA analysis to the study of metamorphic organic matter. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(1), 33–53.Google Scholar
  199. Petschick, R. (1989). Zur Wärmegeschichte im Kalkalpin Bayerns und Nordtirols (Inkohlung und Illit-Kristallinität). Ph.D. dissertation, Frankfurter geowissenschaftliche Arbeiten, Serie C, 10, University Frankfurt.Google Scholar
  200. Pettijohn, F.J., Potter, P.E., & Siever, R. (1972). Sand and sandstone. New York: Springer.Google Scholar
  201. Potel, S., Ferreiro Mählmann, R., Stern, W. B., Mullis, J., & Frey, M. (2006). Very low-grade metamorphic evolution of pelitic rocks under high-pressure/low-temperature conditions, NW New Caledonia (SW Pacific). Journal of Petrology, 47, 991–1015.CrossRefGoogle Scholar
  202. Potel, S., & Trullenque, G. (2012). Very low-grade metamorphism in the para-autochtonous sedimentary cover of the Pelvoux massif (Western Alps, France) (this issue).Google Scholar
  203. Price, L. C. (1983). Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. Journal of Petroleum Geology, 6, 5–38.Google Scholar
  204. Quirico, E., Montagnac, G., Rouzaud, J.-N., Bonal, L., Bourot-Denise, M., Duber, S., et al. (2009). Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals. Earth and Planetary Science Letters, 287, 185–193.CrossRefGoogle Scholar
  205. Rahl, J. M., Anderson, K. M., Brandon, M. T., & Fassoulas, C. (2005). Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters, 240, 339–354.CrossRefGoogle Scholar
  206. Rahn, M.K. (1994). Incipient metamorphism of the Glarus Alps: Petrology of the Taveyanne greywacke and fission track dating. Ph.D. dissertation, Switzerland: University of Basel.Google Scholar
  207. Rahn, M. K., Hurford, A. J., & Frey, M. (1997). Rotation and exhumation of a thrust plane: Apatite fission-track data from the Glarus thrust, Switzerland. Geology, 25(7), 599–602.CrossRefGoogle Scholar
  208. Rahn, M. K., Mullis, J., Erdelbrock, K., & Frey, M. (1994). Very low-grade metamorphism of the Taveyanne greywacke, Glarus Alps, Switzerland. Journal of Metamorphic Geology, 12, 625–641.CrossRefGoogle Scholar
  209. Rahn, M. K., Mullis, J., Erdelbrock, K., & Frey, M. (1995). Alpine metamorphism in the North Helvetic flysch of the Glarus Alps, Switzerland. Eclogae Geologicae Helvetiae, 88(1), 157–178.Google Scholar
  210. Rahn, M. K., Steinmann, M., & Frey, M. (2002). Cloritoid composition and formation in the eastern Central Alps: A comparison between Penninic and Helvetic occurences. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 253–272.Google Scholar
  211. Ramdohr, P. (1928). Mikroskopische Beobachtungen an Graphiten und Koksen. Archiv für Eisenhüttenwesen, 1, 669–672.Google Scholar
  212. Rantitsch, G. (1997). Thermal history of the Carnic Alps (Southern Alps, Austria) and its palaeogeographic implications. Tectonophysics, 272, 213–232.CrossRefGoogle Scholar
  213. Rantitsch, G., Grogger, W., Teichert, C., Ebner, F., Hofer, C., Mauer, E. M., et al. (2004). Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. International Journal of Earth Sciences, 93, 959–973.CrossRefGoogle Scholar
  214. Reinhardt, M. (1991). Vitrinite reflectance, illite-crystallinity and tectonics: results from the Northern Appennines (Italy). Organic Geochemistry, 17(2), 175–184.CrossRefGoogle Scholar
  215. Ritter, U. (1984). The influence of time and temperature on vitrinite reflectance. Organic Geochemistry, 6(4), 473–480.CrossRefGoogle Scholar
  216. Robert, P. (1988). Organic metamorphism and geothermal history—Microscopic study of organic matter and thermal evolution of sedimentary basins. Nordrecht: Elf-Aqitaine & D. Reidel Publication company.Google Scholar
  217. Ross, J.V., & Bustin, R.M. (1990). The role of strain energy in creep graphitization of anthracite. Nature, 343(6253), 58.Google Scholar
  218. Rybach, L., Mueller, S., Milnes, A. G., Ansorge, J., Bernoulli, D., & Frey, M. (1980). The Swiss Geotraverse Basel-Chiasso—A review. Eclogae Geologicae Helvetiae, 73(2), 437–462.Google Scholar
  219. Schaer, J. P., & Persoz, P. (1976). Aspects structuraux et pétrographiques du Haut Atlas calcaire de Midelt (Maroc). Bulletin de la Société Géologique de France, 18, 1239–1250.Google Scholar
  220. Schegg, R. (1993). Thermal maturity and history of sediments in the North Alpine Foreland Basin (Switzerland, France). Ph.D. dissertation, Switzerland: Université de Genève, Thèse N° 2612.Google Scholar
  221. Schegg, R. (1994). The coalification profile of the well Weggis (Subalpine Molasse, Central Switzerland): implications for erosion estimates and the palaeogeothermal regime in the external part of the Alps. Bulletin of the Swiss Association of Petroleum Geologists and Engineers, 61/136, 57–67.Google Scholar
  222. Scherrer, P. (1918). Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten der Gesellschaft für Wissenschaft, Göttingen, 26, 98–100.Google Scholar
  223. Schmid, S. M. (1975). The Glarus overthrust; field evidences and mechanical model. Eclogae Geologicae Helvetiae, 68(2), 247–280.Google Scholar
  224. Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97(1), 93–117.CrossRefGoogle Scholar
  225. Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., & Kissling, E. (1996). Geophysical-geological transect and tectonic evolution of the Swiss-Italien Alps. Tectonics, 15, 1036–1064.CrossRefGoogle Scholar
  226. Schmidt, S. Th., & Ferreiro Mählmann, R. (Eds.) (2002). Diagenesis and low-grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 147–426.Google Scholar
  227. Schmidt, D., Livi, K. J. T., & Frey, M. (1999). Reaction progress in chloritic minerals: an electon microbeam study of Tavayanne greywacke, Switzerland. Journal of Metamorphic Geology, 17, 229–241.CrossRefGoogle Scholar
  228. Schmidt, D., Schmidt, S Th, Mullis, J., Ferreiro Mählmann, R., & Frey, M. (1997). Very low-grade metamorphism of the Taveyanne formation of western Switzerland. Contribution to Mineralogy and Petrology, 129, 385–403.CrossRefGoogle Scholar
  229. Schönherr, J., Littke, R., Urai, J. L., Kukla, P. A., & Rawahi, Z. (2007). Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by solid bitumen maturity. Organic Geochemistry, 38(8), 1293–1318.CrossRefGoogle Scholar
  230. Schönherr, J., Scheuvens, D., Thöni, M., & Ferreiro Mählmann, R. (2004). Possible shear heating at a basement-cover tectonic contact: The Ortles shear zone (Southern Tyrol/Italy). RST-GV meeting Strasbourg 2004, RSTGV-Abstract-00276 (vol. 18).Google Scholar
  231. Schramm, J. M. (1977). Über die Verbreitung epi- und anchimetamorpher Sedimentgesteine in der Grauwackenzone und in den Nördlichen Kalkalpen (Österreich)—Ein Zwischenbericht. Geologische-paläontogische Mitteilung Innsbruck, 7, 3–20.Google Scholar
  232. Sharp, Z. D., Frey, M., & Livi, K. J. T. (1995). Prograde metamorphic stable isotope variations (H, C, O) in a Triassic redbed formation, Central Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 75(1), 147–161.Google Scholar
  233. Shelley, D. (1995). Igneous and metamorphic rocks under the microscope. (2nd ed., 1992), reprint 1995. London: Chapman and Hall.Google Scholar
  234. Smykatz-Kloss, W., & Althaus, E. (1974). Experimental investigation of the temperature dependence of the “crystallinity” of illites and glauconites. Bulletin Groupe français des Argiles, 26, 319–325.Google Scholar
  235. Środoń, J. (1979). Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin. In M.M. Mortland & V.C. Farmer (Eds.), Proceedings International Clay Conference, Oxford, 1978 (pp. 251–260). Amsterdam: Elsevier.Google Scholar
  236. Środoń, J., Andreoli, C., Elsass, F., & Robert, M. (1990). Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock. Clays and Clay Minerals, 38, 373–379.CrossRefGoogle Scholar
  237. Środoń, J., Elsass, F., McHardy, W. J., & Morgan, D. J. (1992). Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137–158.CrossRefGoogle Scholar
  238. Stach, E. (1935). Lehrbuch der Kohlenpetrographie. Berlin: Bornträger.Google Scholar
  239. Stach, E., Mackowsky, M.Th., Teichmüller R, M., Taylor, G.H., Chandra, D., & Teichmüller, R. (1971, 1982). Textbook of Coal Petrology (538 pp, 3rd ed.). 1st. and 3rd. edns. Stuttgart: Bornträger,,Google Scholar
  240. Steck, A. (2008). Tectonics of the Simplon massif and Lepontine gneiss dome: deformation structures due to collision between the understhrusting European plate and the Adriatic indenter. Swiss Journal of Geosciences, 101(2), 515–546.CrossRefGoogle Scholar
  241. Stern, W. B., Mullis, J., Rahn, M., & Frey, M. (1991). Deconvolution of the first “illite” basal reflection. Schweizerische Mineralogisch Petrographische Mitteilungen, 71(3), 453–462.Google Scholar
  242. Suchý, V. (2000). Illite crystallinity and vitrinite reflectance in Paleozoic siliciclastics in the SE Bohemian massif as evidence of thermal history—Discussion and reply. The relationship between illite crystallinity and vitrinite reflectance: What is behind it? Geologica Carpathica, 51(3), 209–214.Google Scholar
  243. Suchý, V., Frey, M., & Wolf, M. (1997). Vitrinite reflectance and shear-induced graphitization in orogenic belts: A case study from the Kandersteg area, Helvetic Alps, Switzerland. International Journal of Coal Geology, 34, 1–20.CrossRefGoogle Scholar
  244. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74(10), 1559–1570.Google Scholar
  245. Taylor, G. H., Teichmüller, M., Davies, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology. Berlin: Gebrüder Bornträger.Google Scholar
  246. Teichmüller, M. (1987). Organic material and very low-grade metamorphism. In M. Frey (Ed.), Low temperature metamorphism (pp. 114–161) Glasgow and London: Blacky.Google Scholar
  247. Teichmüller, M., & Teichmüller, R. (1954). Die stoffliche und strukturelle Metamorphose der Kohle. Geologische Rundschau, 42, 265–296.CrossRefGoogle Scholar
  248. Teichmüller, M., & Teichmüller, R. (1966). Die Inkohlung im saar-lothringer Karbon, verglichen mit der im Ruhrkarbon. Zeitschrift der Deutschen Geologischen Gesellschaft, 117, 243–279.Google Scholar
  249. Teichmüller, M., Teichmüller, R., & Weber, K. (1979). Inkohlung und Illit-Kristallinität—Vergleichende Untersuchungen im Mesozoikum und Paläozoikum von Westfalen. Fortschritte in der Geologie von Rheinland und Westfalen, 27, 201–276.Google Scholar
  250. Thum, I., & Nabholz, W. (1972). Zur Sedimentologie und Metamorphose der penninischen Flysch- und Schieferabfolgen im Gebiet Prättigau-Lenzerheide-Oberhalbstein. Beiträge zur geologischen Karte der Schweiz, [N.F.] 144, 1–55.Google Scholar
  251. Todorov, I., Schegg, R., & Wildi, W. (1993). Thermal maturity and modelling of Mesozoic and Cenozoic sediments in the south of the Rhine Graben and the Eastern Jura (Switzerland). Eclogae Geologicae Helvetiae, 86(3), 667–692.Google Scholar
  252. Treloar, P.J., & O’Brien, P.J. (1998). What drives metamorphism and metamorphic reactions? London: Geological Society. Special Publications 138.Google Scholar
  253. Turner, F.J. (1968). Metamorphic petrology: Mineralogical and field aspects. New York: McGraw-Hill.Google Scholar
  254. Underwood, M.B., Brocculeri, T., Bergfeld, D., Howell, D.G., & Pawlewicz, M. (1992). Statistical comparison between illite crystallinity and vitrinite reflectance, Kandik region of East-Central Alaska. In: D.C. Bradley & C. Dusel-Bacon (Eds.) Geologic studies in Alaska by the U.S. Geological Survey 1991. USGS Bulletin, 2041, pp. 222–237.Google Scholar
  255. Underwood, M.B., Laughland, M.M., Wiley, T.J., & Howell, D.G. (1989). Thermal maturity and organic geochemistry of the Kandic basin region, East-Central Alaska. Open-File Report, Department of the interior U.S.Geological Survey, pp. 89–353.Google Scholar
  256. Underwood, M. B., Laughland, M. M., Wiley, T. J., & Howell, D. G. (1991). Correlation among paleotemperature indicators within orogenic belts: Examples from pelitic rocks of the Franciscan Complex (California), the Shimanto Belt (Japan), and the Kandik Basin (Alaska). EOS, 72, 549.Google Scholar
  257. Uzarowicz, Ł., Skiba, S., Skiba, M., & Šegvić, B. (2011). Clay-mineral formation in soils developed in the weathering zone of pyrite-bearing schists: A case study from the abandoned pyrite mine in Wiesciszowice, Lower Silesia, SW Poland. Clays and Clay Minerals, 59, 581–594.CrossRefGoogle Scholar
  258. Velde, B. (1995). Origin and mineralogy of clays. Berlin: Springer.Google Scholar
  259. Velde, B., & Vasseur, G. (1992). Estimation of the diagenetic smectite to illite transformation in time-temperature space. American Mineralogist, 77, 967–976.Google Scholar
  260. Wang, H., Frey, M., & Stern, W. B. (1996). Diagenesis and metamorphism of clay minerals in the Helvetic Alps of eastern Switzerland. Clays and Clay Minerals, 44(1), 96–112.CrossRefGoogle Scholar
  261. Wang, H., Stern, W. B., & Frey, M. (1995). Deconvolution of the X-ray “illite” 10 Å complex: a case study of Helvetic sediments from eastern Switzerland. Schweizerische Mineralogisch Petrographische Mitteilungen, 75(2), 187–199.Google Scholar
  262. Waples, D. W. (1980). Time and temperature in petroleum formation: Application of Lopatin’s Method to petroleum exploration. American Association of Petroleum Geologists Bulletin, 64(6), 916–926.Google Scholar
  263. Waples, D. W., Kamata, H., & Suizu, M. (1992). The art of maturity modeling Part 1: finding a satisfactory geologic model. American Association of Petroleum Geologists Bulletin, 76(1), 31–46.Google Scholar
  264. Warr, L. N., & Nieto, F. (1998). Crystallite thickness and defect density of phyllosilicates in low temperature metamorphic pelites: a TEM and XRD study of clay-mineral crystallinity-index standards. Canadian Mineralogist, 36, 1453–1474.Google Scholar
  265. Warr, L.N., & Peacor, D.R. (2002). Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slates. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 187–202.Google Scholar
  266. Warr, L. N., Primmer, T. J., & Robinson, D. (1991). Variscan very low-grade metamorphism in southwest England: a diastathermal and thrust-related origin. Journal of Metamorphic Geology, 9, 751–764.CrossRefGoogle Scholar
  267. Warr, L. N., & Rice, A. H. N. (1994). Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141–152.CrossRefGoogle Scholar
  268. Weaver, C. E. (1961). Clay minerals of the Ouachita structural belt and adjacent foreland: Univ. Texas, Bur. Economics, Geology Publications, 6120, 147–162.Google Scholar
  269. Weaver, C.E. (1989). Clays, Muds and Shales. Developments in Sedimentology (vol. 44). Amsterdam: Elsevier.Google Scholar
  270. Weaver, C. E., & Broekstra, B. R. (1984). Illite-mica. In C. E. Weaver (Ed.), Shale slate metamorphism in Southern Appalachians (pp. 67–199). Amsterdam: Elsevier.Google Scholar
  271. Weber, K. (1972). Kristallinität des Illits in Tonschiefern und andere Kriterien schwacher Metamorphose im nordöstlichen Rheinischen Schiefergebirge. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 141(3), 333–363.Google Scholar
  272. Weh, M. (1998). Tektonische Entwicklung der penninischen Sediment-Decken in Graubüngen (Prättigau bis Oberhalbstein). Ph.D. dissertation, Switzerland: Univ. Basel.Google Scholar
  273. White, D., & Thiessen, R. (1913). The origin of coal (vol. 38). Washington, D.C.: Bureau of Mines Bulletin.Google Scholar
  274. Wiederer, U., Königshof, P., Feist, R., Franke, W., & Doublier, M. P. (2002). Low-grade metamorphism in the Montagne Noire (S-France): Connodont Alteration Index (CAI) in Palaeozoic carbonates and implications for the exhumation of a hot metamorphic core complex. In: S.Th. Schmidt & R. Ferreiro Mählmann (Eds.) Diagenesis and low grade metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(2), 393–407.Google Scholar
  275. Wiederkehr, M., Bousquet, R., Ziemann, M. A., Berger, A., & Schmid, S. M. (2011). 3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material: an example from the margin of the Lepontine dome (Swiss Central Alps). International Journal of Earth Sciences (Geologische Rundschau), 100, 1029–1063.CrossRefGoogle Scholar
  276. Wiederkehr, M., Sudo, M., Bousquet, R., Berger, A., & Schmid, S. M. (2009). Alpine orogenic evolution from subduction to collisional thermal overprint: The 40Ar/39Ar age constraints from the Valaisan Ocean, central Alps, Tectonics, 28, TC6009.Google Scholar
  277. Wilks, K.R., Mastalerz, M., Bustin, R.M., & Ross, J.V. (1993). The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal. Interational Journal of Coal Geology, 22(3–4), 247–277.Google Scholar
  278. Williams, D. J. A., Hofmann, B. A., & Glasspool, I. G. (2008). Coalification in Carboniferous sediments from the Lötschberg base tunnel. Swiss Journal of Geosciences, 101, 651–658.CrossRefGoogle Scholar
  279. Wilson, M. J. (1999). The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 7–25.CrossRefGoogle Scholar
  280. Wilson, M. J. (2004). Weathering of primary rock-forming minerals: Processes, products and rates. Clay Minerals, 39, 233–266.CrossRefGoogle Scholar
  281. Winkler, H. G. F. (1979). Petrogenesis of metamorphic rocks (5th ed.). Berlin: Springer.Google Scholar
  282. Wolf, M. (1969). Ein Inkohlungsprofil durch das Flözleere nördlich von Meschede. Erdöl und Kohle, 22(4), 185–187.Google Scholar
  283. Wolf, M. (1975). Über die Beziehungen zwischen Illit-Kristallinität und Inkohlung. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1975(7), 437–447.Google Scholar
  284. Yang, C., & Hesse, R. (1991). Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians. Clay Minerals, 26, 211–231.CrossRefGoogle Scholar
  285. Yardley, B. W. D. (1989). An introduction to metamorphic petrology. Harlow: Longman Scientific & Technical.Google Scholar
  286. Zaporozhtseva, A. S. (1960). On the regional development of laumontite in Cretaceous deposits of Lena coal basin. Izvestiya, Academy of Sciences, USSR, 9, 52–59.Google Scholar

Copyright information

© Swiss Geological Society 2012

Authors and Affiliations

  • Rafael Ferreiro Mählmann
    • 1
    • 2
    Email author
  • Ömer Bozkaya
    • 3
  • Sébastien Potel
    • 2
    • 4
  • Ronan Le Bayon
    • 1
    • 2
  • Branimir Šegvić
    • 1
  • Fernando Nieto
    • 5
  1. 1.Technical and Low Temperature Petrology, Institut für Angewandte GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Mineralogisch-Petrographisches InstitutUniversität BaselBaselSwitzerland
  3. 3.Department of Geological EngineeringCumhuriyet UniversitySivasTurkey
  4. 4.Institut Polytechnique LaSalle BeauvaisBeauvais CedexFrance
  5. 5.Departamento de Mineralogía y Petrología and IACTUniversidad de Granada, CSICGranadaSpain

Personalised recommendations