Swiss Journal of Geosciences

, Volume 105, Issue 3, pp 377–399 | Cite as

Provenance of Cretaceous synorogenic sediments from the NW Dinarides (Croatia)

  • Borna Lužar-Oberiter
  • Tamás Mikes
  • István Dunkl
  • Ljubomir Babić
  • Hilmar von Eynatten


Scarce basin remnants of Cretaceous synorogenic sediments exposed in the Medvednica, Ivanščica, Žumberak Mts. and Samobor Hills of northern Croatia record the early orogenic history of the NW Dinarides. The provenance of sandstones from five clastic formations (Oštrc, Bistra, Kravljak, Vivodina and Glog) which cover a time span from Early to late Late Cretaceous was studied by combining petrography, whole-rock geochemistry, heavy mineral chemistry and detrital zircon fission track dating. These sediments record at least two major regional thermotectonic events which correlate well with those affecting both the Alps and the Tisza-Dacia unit to the north and east, and the central Dinaride region to the south. Short zircon fission track lag times in Barremian to Albian sediments indicate that continental fragments of the distal Adria plate margin underwent relatively fast, synsedimentary exhumation in the Early Cretaceous. Moreover, a clear dominance of Campanian zircon cooling ages (80–73 Ma) in Maastrichtian sandstones indicates detritus deriving from the erosion of newly and rapidly exhumed basement units which had undergone Late Cretaceous metamorphism in the Eastern Alps and/or the Tisza-Dacia region. Probably, the rapid Maastrichtian erosion generating metamorphic detritus occurred to a great extent on neighbouring Austroalpine basement units, and/or on the upper plate Tisza-Dacia unit during the subduction stage or the initial stages of the continent–continent collision with Adria. Development of the accretionary wedge probably resulted in a renewed availability of ophiolites for erosion within small and/or dynamically changing catchments, which can be deduced from the notable differences in reconstructed source lithologies for the coeval Glog and Vivodina formations. Combined evidence from sedimentary provenance indicators precludes the Dinaride (Adriatic) basement as a significant source for the Maastrichtian sediments.


Dinarides Croatia Cretaceous Sandstone provenance Geochemistry Heavy mineral chemistry Fission track thermochronology 

Supplementary material

15_2012_107_MOESM1_ESM.pdf (118 kb)
Supplementary material 1 (PDF 117 kb)
15_2012_107_MOESM2_ESM.pdf (98 kb)
Supplementary material 2 (PDF 97.9 kb)
15_2012_107_MOESM3_ESM.pdf (105 kb)
Supplementary material 3 (PDF 105 kb)
15_2012_107_MOESM4_ESM.pdf (1.8 mb)
Supplementary material 4 (PDF 1.81 mb)
15_2012_107_MOESM5_ESM.pdf (594 kb)
Supplementary material 5 (PDF 593 kb)


  1. Árgyelán, G. B. (1996). Geochemical investigations of detrital chrome spinels as a tool to detect an ophiolitic source area (Gerecse Mountains, Hungary). Acta Geologica Hungarica, 39, 341–368.Google Scholar
  2. Árkai, P., Balogh, K., & Dunkl, I. (1995). Timing of low-temperature metamorphism and cooling of the Paleozoic and Mesozoic formations of the Bükkium, innermost Western Carpathians, Hungary. Geologische Rundschau, 84, 334–344.Google Scholar
  3. Árkai, P., Bérczi-Makk, A., & Balogh, K. (2000). Alpine low-T prograde metamorphism in the post-Variscan basement of the Great Plain, Tisza Unit (Pannonian Basin, Hungary). Acta Geologica Hungarica, 43, 43–63.Google Scholar
  4. Árkai, P., Lantai, C., Fórizs, I., & Lelkes-Felvári, G. (1991). Diagenesis and low-temperature metamorphism in a tectonic link between the Dinarides and the Western Carpathians: the basement of the Igal (Central Hungarian) Unit. Acta Geologica Hungarica, 34, 81–100.Google Scholar
  5. Aubouin, J., Blanchet, R., Cadet, J.-P., Celet, P., Charvet, J., Chorowicz, J., Cousin, M., Rampnoux, J.-P. (1970). Essai sur la géologie des Dinarides. Bulletin de la Société Géologique de France, 12(7), 1060–1095.Google Scholar
  6. Babić, L. (1973). Upper Tithonian to Valanginian basinal sediments west of Bregana [In Croatian with English summary]. Geološki vjesnik Zagreb, 26, 11–27.Google Scholar
  7. Babić, L. (1974). Hauterivian to Cenomanian time in the region of Žumberak, Northwestern Croatia: stratigraphy, sediments, paleogeographic and paleotectonic evolution [In Croatian with English summary]. Geološki vjesnik Zagreb, 27, 11–33.Google Scholar
  8. Babić, L. (1975). Condensed Liassic sedimentation on Mt. Medvednica and Mt. Ivanščica (Northern Croatia) and its significance for the interpretation of the paleogeographic evolution of the Inner Dinaric Belt [In Croatian with English summary]. Geološki vjesnik Zagreb, 28, 11–28.Google Scholar
  9. Babić, L., & Gušić, I. (1978). Review of fossils from the “clastic complex with ophiolites” of Mt. Ivanščica and their stratigraphic importance [In Croatian with English summary]. Geološki vjesnik Zagreb, 30, 1–19.Google Scholar
  10. Babić, L., Gušić, I., & Devidé-Nedéla, D. (1973). Senonian breccias and overlying deposits on Mt. Medvednica (northern Croatia) [In Croatian with English summary]. Geološki vjesnik Zagreb, 25, 11–27.Google Scholar
  11. Babić, L., Hochuli, P. A., & Zupanič, J. (2002). The Jurassic ophiolitic mélange in the NE Dinarides: dating, internal structure and geotectonic implications. Eclogae Geologicae Helvetiae, 95, 263–275.Google Scholar
  12. Babić, L., & Zupanič, J. (1973). Uppermost Jurassic and Early Cretaceous on Mt. Ivanščica (Northern Croatia) [In Croatian with English summary]. Geološki vjesnik Zagreb, 26, 267–271.Google Scholar
  13. Balogh, K., & Dunkl, I. (2005). Argon and fission track dating of Alpine metamorphism and basement exhumation in the Sopron Mts. (Eastern Alps, Hungary): thermochronology or mineral growth? Mineral Petrol, 83, 191–218.Google Scholar
  14. Balogh, K., Kovács, Á., Pécskay, Z., Svingor, É., & Árkai, P. (1990). Very low- and low-grade metamorphic rocks in the pre-Tertiary basement of the Drava Basin, SW-Hungary, II: K-Ar and Rb-Sr isotope geochronologic data. Acta Geologica Hungarica, 33, 69–78.Google Scholar
  15. Bébien, J., Blanchet, R., Cadet, J. P., Charvet, J., Chorowicz, J., Lappiere, H., et al. (1978). Le volcanisme Triasique des Dinarides en Yougoslavie: sa place dans l’évolution géotectonique périméditerranéenne. Tectonophysics, 4, 159–176.Google Scholar
  16. Belak, M. (2005). Metamorphic rocks of the blueschist and greenschist facies on the Medvednica Mt. Ph.D. dissertation, University of Zagreb, Zagreb, Croatia.Google Scholar
  17. Belak, M., Pamić, J., Kolar-Jurkovšek, T., Pécskay, Z., Karan, D. (1995). The Alpine regional metamorphic complex of Medvednica (northwestern Croatia) [In Croatian]. In Proceedings, 1st Croatian Geological Congress (pp. 67–70). Opatija: Croatian Geological Society.Google Scholar
  18. Benedek, K., Nagy, Zs, Dunkl, I., Szabó, C., & Józsa, S. (2001). Petrographical, geochemical and geochronological constraints on igneous clasts and sediments hosted in the Oligo-Miocene Bakony Molasse, Hungary: evidence for Paleo-Drava River system. Int J Earth Sci, 90, 519–533.Google Scholar
  19. Bernoulli, D., & Laubscher, H. (1972). The palinspastic problem of the Hellenides. Eclogae Geologicae Helvetiae, 65, 107–118.Google Scholar
  20. Biševac, V., Balogh, K., Balen, D., & Tibljaš, D. (2010). Eoalpine (Cretaceous) very low- to low-grade metamorphism recorded on the illite-muscovite-rich fraction of metasediments from South Tisia (eastern Mt Papuk, Croatia). Geologica Carpathica, 61, 469–481.Google Scholar
  21. Blanchet, R., Cadet, J.-P., Charvet, J. (1970). Sur l’existance d’unités intermédiaires entre la zone du Haut-Karst et l’unité du Flysch Bosniaque, en Yugoslavie: la sous-zone Prékarstique. Bulletin de la Société Géologique de France, 12(7), 227–236.Google Scholar
  22. Blanchet, R., Cadet, J.-P., Charvet, J., Rampnoux, J.-P. (1969). Sur l’existence d’un important domaine de flysch tithonique-crétacé inférieur en Yougoslavie: l’unité du flysch bosniaque. Bulletin de la Société Géologique de France, 11(7), 871–880.Google Scholar
  23. Blašković, I. (1998). The two stages of structural formation of the coastal belt of the External Dinarides. Geologia Croatica, 51, 75–89.Google Scholar
  24. Bortolotti, V., Ficcarelli, G., Manetti, P., Passerini, P., Pirini Radrizzani, C., & Torre, D. (1971). A Jurassic sequence on top of the Zlatibor ultramafic massif (Jugoslavia). Bollettino della Società Geologica Italiana, 90, 415–428.Google Scholar
  25. Channell, J. E. T., & Kozur, H. W. (1997). How many oceans? Meliata, Vardar, and Pindos oceans in Mesozoic Alpine paleogeography. Geology, 25, 183–186.Google Scholar
  26. Charvet, J. (1978). Essai sur un orogène alpin: Géologie des Dinarides au niveau de la transversale de Sarajevo (Yougoslavie). Publications de la Société Géologique du Nord, 2, 1–554.Google Scholar
  27. Charvet, J. (1980). Développement de l’orogène dinarique d’après l’étude du secteur transversal de Sarajevo (Yougoslavie). Revue de Géologie Dynamique et de Géographie Physique, 22, 29–50.Google Scholar
  28. Charvet, J. & Termier, G. (1971) Les Nérinéacés de la limite Jurassique-Crétacé de Bjeliš (Nord de Sarajévo, Yougoslavie). AnnalesSociété Géologique du Nord, 91, 187–191.Google Scholar
  29. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol, 104, 1–37.Google Scholar
  30. Crnjaković, M. (1979). Sedimentation of transgressive Senonian in Southern Mt. Medvednica [In Croatian with English summary]. Geološki vjesnik Zagreb, 32, 81–95.Google Scholar
  31. Crnjaković, M. (1981). Maastrichtian flysch sediments in the south–west part of Mt. Medvednica [In Croatian with English summary]. Geološki vjesnik Zagreb, 34, 47–61.Google Scholar
  32. Crnjaković, M. (1987). Sedimentology of Cretaceous and Paleogene clastics of Mt. Medvednica, Ivanšćica, and Žumberak. Ph.D. dissertation, University of Zagreb, Zagreb, Croatia.Google Scholar
  33. Crnjaković, M. (1989). Lower Cretaceous shallow marine deposits in Mt. Medvednica [In Croatian with English summary]. Acta Geologica Zagreb, 19, 61–93.Google Scholar
  34. Crnjaković, M., Babić, L., & Zupanič, J. (2000). Albian-Cenomanian arenites overlying Dinaric platform carbonates contain detritus derived from continental and ophiolitic rocks. In B. Tomljenović, D. Balen, & B. Saftić (Eds.), Special Issue PANCARDI 2000 Vijesti Hrvatskog geološkog društva, 37. Croatian Geological Society: Dubrovnik.Google Scholar
  35. Császár, G., & Árgyelán, G. B. (1994). Stratigraphic and micromineralogical investigations on Cretaceous formations of the Gerecse Mountains, Hungary and their palaeogeographic implications. Cretaceous Res, 15, 417–434.Google Scholar
  36. Csontos, L., Sztanó, O., Pocsai, T., Bárány, M., Palotai, M., & Wettstein, E. (2005). Late Jurassic–Early Cretaceous Alpine deformation events in the light of redeposited sediments. Geolines, 19, 29–31.Google Scholar
  37. Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol, 210, 1–56.Google Scholar
  38. Devidé-Nedéla, D., Babić, L., & Zupanič, J. (1982). Maastrichtian age of the Vivodina flysch in Žumberak and the surroundings of Ozalj (Western Croatia) based on planktonic foraminifera [In Croatian with French summary]. Acta Geologica Zagreb, 35, 21–36.Google Scholar
  39. Dimitrijević, M. D. (2001). Dinarides and the Vardar Zone: a short review of the geology. Acta Vulcanologica, 13, 1–8.Google Scholar
  40. Dimitrijević, M. D., & Dimitrijević, M. N. (1973). Olistostrome mélange in the Yugoslavian Dinarides and Late Mesozoic plate tectonics. J Geol, 81, 328–340.Google Scholar
  41. Dragičević, I., & Velić, I. (2002). The northeastern margin of the Adriatic Carbonate Platform. Geologia Croatica, 55, 185–232.Google Scholar
  42. Dunkl, I. (2002). Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers and Geosciences, 28, 3–12. Available online at:
  43. Dunkl, I., Frisch, W., & Grundmann, G. (2003). Zircon fission track thermochronology of the southeastern part of the Tauern Window and the adjacent Austroalpine margin, Eastern Alps. Eclogae Geologicae Helvetiae, 96, 209–217.Google Scholar
  44. Dunkl, I., & Székely, B. (2002). Component analysis with visualization of fitting; PopShare, a Windows program for data analysis (abstract). Geochimica et Cosmochimica Acta, 66, 201.Google Scholar
  45. Faupl, P., & Tollmann, A. (1979). Die Roßfeldschichten: Ein Beispiel für Sedimentation im Bereich einer tektonisch aktiven Tiefseerinne aus der kalkalpinen Unterkreide. Geologische Rundschau, 68, 93–120.Google Scholar
  46. Faupl, P., & Wagreich, M. (2000). Late Jurassic to Eocene Palaeogeography and Geodynamic Evolution of the Eastern Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 79–94.Google Scholar
  47. Frank, W., & Schlager, W. (2006). Jurassic strike slip versus subduction in the Eastern Alps. Int J Earth Sci, 95, 431–450.Google Scholar
  48. Frisch, W., & Gawlick, H.-J. (2003). The nappe structure of the central Northern Calcareous Alps and its disintegration during Miocene tectonic extrusion—a contribution to understanding the orogenic evolution of the Eastern Alps. Int J Earth Sci, 92, 712–727.Google Scholar
  49. Froitzheim, N., Conti, P., & van Daalen, M. (1997). Late Cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the Eastern Alps. Tectonophysics, 280, 267–293.Google Scholar
  50. Fügenschuh, B., Seward, D., & Mancktelow, N. (1997). Exhumation in a convergent orogen: the western Tauern window: the western Tauern window. Terra Nova, 9, 213–217.Google Scholar
  51. Galbraith, R. F. (1990). The radial plot: graphical assessment of spread in ages. Nucl Tracks Radiat Meas, 17, 207–214.Google Scholar
  52. Galbraith, R. F., & Laslett, G. M. (1993). Statistical models for mixed fission track ages. Nucl Tracks Radiat Meas, 21, 459–470.Google Scholar
  53. Gardin, S., Kici, V., Marroni, M., Pandolfi, L., Pirdeni, A., & Xhomo, A. (1996). Litho- and biostratigraphy of the Firza flysch, ophiolite Mirdita nappe, Albania. Ofioliti, 21, 47–54.Google Scholar
  54. Goričan, Š., Halamić, J., Grgasović, T., & Kolar-Jurkovšek, T. (2005). Stratigraphic evolution of Triassic arc-backarc system in northwestern Croatia. Bulletin de la Société Géologique de France, 176, 3–22.Google Scholar
  55. Gušić, I. (1975). Lower Cretaceous imperforate Foraminiferida of Mt. Medvednica, Northern Croatia (Families: Litoulidae, Ataxophragmidiidae, Orbitolinidae). Paleontologica Jugoslavica, 14, 7–48.Google Scholar
  56. Haas, J., Mioč, P., Pamić, J., Tomljenović, B., Árkai, P., Bérczi-Makk, A., et al. (2000). Complex structural pattern of the Alpine–Dinaridic–Pannonian triple junction. Int J Earth Sci, 89, 377–389.Google Scholar
  57. Haas, J., & Péró, Cs. (2004). Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sci, 93, 297–313.Google Scholar
  58. Halamić, J., & Goričan, Š. (1995). Triassic radiolarites from Mts. Kalnik and Medvednica (Northwestern Croatia). Geologica Croatica, 48, 129–146.Google Scholar
  59. Halamić, J., Goričan, Š., Slovenec, D., & Kolar-Jurkovšek, T. (1999). A Middle Jurassic radiolarite-clastic succession from the Medvednica Mt. (NW Croatia). Geologica Croatica, 52, 29–57.Google Scholar
  60. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., & Bernoulli, D. (2009). Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev, 102, 121–158.Google Scholar
  61. Henry, D. J., & Guidotti, C. V. (1985). Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral, 70, 1–15.Google Scholar
  62. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol, 58, 820–829.Google Scholar
  63. Hrvatović, H. (2000). Passive continental margin formations (Bosnia Flysch). In J. Pamić & B. Tomljenović (Eds.), PANCARDI 2000 Fieldtrip Guidebook, Vijesti Hrvatskog geološkog društva, 37 (pp. 71–72). Dubrovnik: Croatian Geological Society.Google Scholar
  64. Hrvatović, H. (2006). Geological guidebook through Bosnia and Herzegovina (172 pp.). Sarajevo: Geological Survey of Federation Bosnia and Herzegovina.Google Scholar
  65. Hurford, A. J., Fitch, F. J., & Clarke, A. (1984). Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geol Mag, 121, 269–277.Google Scholar
  66. Hurford, A. J., & Green, P. F. (1983). The zeta age calibration of fission-track dating. Isotope Geoscience, 41, 285–317.Google Scholar
  67. Jablonský, J., Sýkora, M., & Aubrecht, R. (2001). Detritic Cr-spinels in Mesozoic sedimentary rocks of the Western Carpathians (overview of the latest knowledge) [in Slovak with English abstract]. Mineralia Slovaca, 33, 487–498.Google Scholar
  68. Jovanović, R. (1961). Prilog poznavanju prostranstva i facija mezozioka “unutrašnje zone Dinarida” u NRBiH [in Serbian with German summary] (pp. 38–63). Budva: III Kongres geologa Jugoslavije.Google Scholar
  69. Judik, K., Balogh, K., Tibljaš, D., & Árkai, P. (2006). New age data on the lowtemperature regional metamorphism of Mt. Medvednica (Croatia). Acta Geologica Hungarica, 49, 207–221.Google Scholar
  70. Jurković, I., & Palinkaš, L. (2002). Discrimination criteria for assigning ore deposits located in the Dinaridic Paleozoic-Triassic formations to Variscan or Alpidic metallogeny. In D. J. Blundell, F. Neubauer, & A. von Quadt (Eds.), The Timing and Location of Major Ore Deposits in an Evolving Orogen, Geological Society Special Publication, 204 (pp. 229–245). London: Geological Society of London.Google Scholar
  71. Karamata, S., Olujić, J., Protić, L., Milovanović, D., Vujnović, L., Popević, A., et al. (2000). The western belt of the Vardar Zone—the remnant of a marginal sea. In S. Karamata & S. Jankovic (Eds.), International Symposium Geology and metallogeny of the Dinarides and the Vardar zone (pp. 131–135). Banja Luka: Academy of Sciences and Arts Republika Srpska.Google Scholar
  72. Korbar, T. (2009). Orogenic evolution of the External Dinarides in the NE Adriatic region: a model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth Sci Rev, 96, 296–312.Google Scholar
  73. Koroknai, B., Horváth, P., Balogh, K., & Dunkl, I. (2001). Alpine metamorphic evolution and cooling history of the Veporic basement in northern Hungary: new petrological and geochronological constraints. Int J Earth Sci, 90, 740–751.Google Scholar
  74. Krenn, K., Fritz, H., Mogessie, A., & Schlaflechner, J. (2008). Late Cretaceous exhumation history of an extensional extruding wedge (Graz Paleozoic Nappe Complex, Austria). Int J Earth Sci, 97, 1331–1352.Google Scholar
  75. Lelkes-Felvári, G., Frank, W., & Schuster, R. (2003). Geochronological constraints of the Variscan, Permian-Triassic and Eo-alpine (Cretaceous) evolution of the Great Hungarian Plain basement. Geologica Carpathica, 54, 299–315.Google Scholar
  76. Lužar-Oberiter, B. (2009). Provenance of Cretaceous clastic sediments from the Western Dinarides of Croatia. Ph.D. dissertation, University of Zagreb, Zagreb, Croatia.Google Scholar
  77. Lužar-Oberiter, B., Mikes, T., von Eynatten, H., & Babić, L. (2009). Ophiolitic detritus in Cretaceous clastic formations of the Dinarides (NW Croatia): evidence from Cr-spinel chemistry. Int J Earth Sci, 98, 1097–1108.Google Scholar
  78. Mange, M. A., & Morton, A. C. (2007). Geochemistry of heavy minerals. In M. A. Mange & D. T. Wright (Eds.), Heavy minerals in use, developments in sedimentology, 58 (pp. 345–392). Amsterdam: Elsevier.Google Scholar
  79. Marroni, M., Pandolfi, L., Onuzi, K., Palandri, S., & Xhomo, A. (2009). Ophiolite-bearing Vermoshi flysch (Albanian Alps, northern Albania): elements for its correlation in the frame of Dinaric-Hellenic Belt. Ofioliti, 34, 95–108.Google Scholar
  80. Matičec, D., Vlahović, I., Velić, I., & Tišljar, J. (1996). Eocene limestones overlying Lower Cretaceous deposits of western Istria (Croatia): Did some parts of present Istria form land during the Cretaceous? Geologia Croatica, 49, 117–127.Google Scholar
  81. McLennan, S.M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst, 2. doi:10.1029/2000GC000109.
  82. McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. In M. J. Johnsson, & A. Basu (Eds.), Processes controlling the composition of clastic sediments. GSA special paper, 284 (pp. 21–40). Boulder: Geological Society of America.Google Scholar
  83. Mikes, T., Baresel, B., Kronz, A., Frei, D., Dunkl, I., Tolosana-Delgado, R., et al. (2009). Jurassic granitoid magmatism in the Dinaride Neotethys: geochronological constraints from detrital minerals. Terra Nova, 21, 495–506.Google Scholar
  84. Mikes, T., Christ, D., Petri, R., Dunkl, I., Frei, D., Báldi-Beke, M., et al. (2008). Provenance of the Bosnian Flysch. Swiss J Geosci, 101(Suppl 1), 31–54.Google Scholar
  85. Milovanović, D. (1984). Petrology of low-grade metamorphic rocks of the middle part of the Drina-Ivanjica Palaeozoic [in Serbian with English summary]. Glasnik Prirodnjačkog Muzeja u Beogradu (Ser. A), 39, 13–139.Google Scholar
  86. Mindszenty, A., D’Argenio, B., & Aiello, G. (1995). Lithospheric bulges recorded by regional unconformities. The case of Mesozoic-Tertiary Apulia. Tectonophysics, 252, 137–161.Google Scholar
  87. Missoni, S., & Gawlick, H.-J. (2011). Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). Int J Earth Sci, 100, 1605–1631.Google Scholar
  88. Moro, A., Ćosović, V., Benić, J., & Dokmanović, J. (2010). Taxonomy of rudists from the Campanian transgressive sediments of Brašljevica, Donje Orešje and Sv. Martin, northern Croatia. Turkish J Earth Sci, 19, 613–633.Google Scholar
  89. Morton, A. C., Hallsworth, C., & Chalton, B. (2004). Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Mar Petrol Geol, 21, 393–410.Google Scholar
  90. Most, T., Frisch, W., Dunkl, I., Balogh, K., Boev, B., Avgerinas, A., et al. (2001). Geochronological and structural investigations of the northern Pelagonian crystalline zone—constraints from K/Ar and zircon and apatite fission track dating. Bull Geol Soc Greece, 34, 91–95.Google Scholar
  91. Neubauer, F., Dallmeyer, R. D., Dunkl, I., & Schirnik, D. (1995). Late Cretaceous exhumation of the metamorphic Gleinalm dome, Eastern Alps—kinematics, cooling history and sedimentary response in a sinistral wrench corridor. Tectonophysics, 242, 79–98.Google Scholar
  92. Neubauer, F., Pamić, J., Dunkl, I., Handler, R., & Majer, V. (2003). Exotic granites in the Cretaceous Pogari Formation overstepping the Dinaric Ophiolite Zone mélange in Bosnia. Annales Universitatis Scientiarum Budapestiensis, Sectio Geologica, 35, 133–134.Google Scholar
  93. Pamić, J. (1983). Permo-Triassic rift faulting and magmatism of the Dinarides. Annales de la Société Géologique du Nord, 103, 133–141.Google Scholar
  94. Pamić, J. (2002). The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar Ocean. Eclogae Geologicae Helvetiae, 95, 99–113.Google Scholar
  95. Pamić, J., Balogh, K., Hrvatović, H., Balen, D., Jurković, I., & Palinkaš, L. (2004). K–Ar and Ar–Ar dating of the Palaeozoic metamorphic complex from the Mid-Bosnian Schist Mts., Central Dinarides. Bosnia and Herzegovina. Mineral Petrol, 82, 65–79.Google Scholar
  96. Pamić, J., Belak, M., Bullen, T. D., Lanphere, M. A., & McKee, E. H. (2000). Geochemistry and geodynamics of a Late Cretaceous bimodal volcanic association from the southern part of the Pannonian Basin in Slavonija (Northern Croatia). Mineral Petrol, 68, 271–296.Google Scholar
  97. Pamić, J., Gušić, I., & Jelaska, V. (1998). Geodynamic evolution of the Central Dinarides. Tectonophysics, 297, 251–268.Google Scholar
  98. Pamić, J., Tomljenović, B., & Balen, D. (2002). Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview. Lithos, 65, 113–142.Google Scholar
  99. Pober, E., & Faupl, P. (1988). The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps. Geologische Rundschau, 77, 641–670.Google Scholar
  100. Prtoljan, B. (2001). Relationships of thrust-fold and horizontal mechanisms of the Mt. Žumberak part of the Sava nappe in the northwestern Dinarides, West Croatia. Acta Geologica Hungarica, 44, 67–80.Google Scholar
  101. Ratschbacher, L., Frisch, W., Neubauer, F., Schmid, S. M., & Neugebauer, J. (1989). Extension in compressional orogenic belts: the eastern Alps. Geology, 17, 404–407.Google Scholar
  102. Robertson, A. H. F., & Karamata, S. (1994). The role of subduction-accretion processes in the tectonic evolution of the Mesozoic Tethys in Serbia. Tectonophysics, 234, 73–94.Google Scholar
  103. Ruiz, G. M. H., Seward, D., & Winkler, W. (2004). Detrital thermochronology—a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador. Basin Res, 16, 413–430.Google Scholar
  104. Schlagintweit, F., Gawlick, H. J., Missoni, S., Hoxha, L., Lein, R., & Frisch, W. (2008). The eroded Late Jurassic Kurbnesh carbonate platform in the Mirdita Ophiolite Zone of Albania and its bearing on the Jurassic orogeny of the Neotethys realm. Swiss J Geosci, 101, 125–138.Google Scholar
  105. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci, 101, 139–183.Google Scholar
  106. Schuster, R., & Frank, W. (2000). Metamorphic evolution of the Austroalpine units east of the Tauern Window: indications for Jurassic strike slip tectonics. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 42, 37–58.Google Scholar
  107. Schuster, R., & Stuwe, K. (2008). Permian metamorphic event in the Alps. Geology, 36, 603–606.Google Scholar
  108. Šikić, K., Basch, O., Šimunić, A. (1977). Basic geological map of Yugoslavia M 1:100000, sheet Zagreb. Croatian Geological Survey, Zagreb, Federal Geological Institute Belgrade.Google Scholar
  109. Šimunić, A., Pikija, M., Hećimović, I. (1982). Basic geological map of Yugoslavia M 1:100000, sheet Varaždin. Croatian Geological Survey, Zagreb, Federal Geological Institute Belgrade.Google Scholar
  110. Starijaš, B., Gerdes, A., Balen, D., Tibljaš, D., & Finger, F. (2010). The Moslavačka Gora crystalline massif in Croatia: a Cretaceous heat dome within remnant Ordovician granitoid crust. Swiss J Geosci, 103, 61–82.Google Scholar
  111. Stüwe, K. (1998). Heat sources of Cretaceous metamorphism in the Eastern Alps—a discussion. Tectonophysics, 287, 251–269.Google Scholar
  112. Tari, G. (1995). Eoalpine (Cretaceous) tectonics in the Alpine/Pannonian transition zone. In Horváth, F., Tari, G., & Bokor, Cs. (Eds.) Extensional collapse of the Alpine orogene and Hydrocarbon prospects in the Basement and Basin Fill of the Western Pannonian Basin. AAPG International Conference and Exhibition, Guidebook to fieldtrip No. 6. Hungary (pp. 133–155). Nice, France.Google Scholar
  113. Tari, G., Dövényi, P., Dunkl, I., Horváth, F., Lenkey, L., Stefanescu, M., Szafián, P., Tóth, T. (1999). Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In B. Durand, L. Jolivet, F. Horváth, M. Séranne (Eds.) The Mediterranean basins: Tertiary extension within the Alpine orogen. Geological Society Special Publication, 156, (pp. 215–250). London: Geological Society of London.Google Scholar
  114. Thöni, M. (1999). A review of geochronological data from the Eastern Alps. Schweizerische Mineralogische und Petrographische Mitteilung, 79, 209–230.Google Scholar
  115. Tomljenović, B., & Csontos, L. (2001). Neogene–Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac Basins, Croatia). Int J Earth Sci, 90, 560–578.Google Scholar
  116. Tomljenović, B., Csontos, L., Márton, E., Márton, P. (2008). Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mts., North Croatia. In S. Siegesmund, B. Fügenschuh, N. Froitzheim (Eds.), Tectonic Aspects of the AlpineCarpathian-Dinaride System, Geological Society Special Publication, 298, (pp. 145–167). London: Geological Society of London.Google Scholar
  117. Ustaszewski, K., Kounov, A., Schmid, S.M., Schaltegger, U., Krenn, E., Frank, W., Fügenschuh, B. (2010). Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent–continent collision to back-arc extension. Tectonics, 29, TC6017.Google Scholar
  118. Ustaszewski, K., Schmid, S. M., Fügenschuh, B., Tischler, M., Kissling, E., Spakman, W. (2008). A map-view restoration of the Alpine–Carpathian–Dinaridic system for the Early Miocene. Swiss J Geosci, 101(Supplementary Issue 1), 273–294.Google Scholar
  119. Ustaszewski, K., Schmid, S. M., Lugović, B., Schuster, R., Schaltegger, U., Bernoulli, D., et al. (2009). Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates. Lithos, 108, 106–125.Google Scholar
  120. Viator, D.B. (2003). Detrital tourmaline as an indicator of provenance: chemical and sedimentological study of modern sands from the Black Hills, South Dakota. M.Sc. thesis, Louisiana State University, Baton Rouge, Louisiana, USA.Google Scholar
  121. Vlahović, I., Tišljar, J., Velić, I., & Matičec, D. (2005). Evolution of the Adriatic Carbonate Platform: palaeogeography, main events and depositional dynamics. Palaeogeogr Palaeoclimatol Palaeoecol, 220, 333–360.Google Scholar
  122. von Eynatten, H., & Gaupp, R. (1999). Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sediment Geol, 124, 81–111.Google Scholar
  123. von Eynatten, H., Gaupp, R., & Wijbrans, J. R. (1996). 40Ar/39Ar laserprobe dating of detrital white micas from Cretaceous sediments of the Eastern Alps: evidence for Variscan high-pressure metamorphism and implications for Alpine orogeny. Geology, 24, 691–694.Google Scholar
  124. von Eynatten, H., Gaupp, R., Wijbrans, J.R., Brix, M., (1997). Provenance of Cretaceous synorogenic sediments in the Eastern Alps: an integrated approach using mineralogical, geochemical, and geochronological methods. Terra Nova, 9, Abstract Supplement No. 1, IX. EUG, p. 593.Google Scholar
  125. Vörös, A. (1993). Jurassic microplate movements and brachiopod migrations in the western part of the Tethys. Palaeogeogr Palaeoclimatol Palaeoecol, 100, 125–145.Google Scholar
  126. Wagreich, M., & Decker, K. (2001). Sedimentary tectonics and subsidence modeling of the type Upper Cretaceous Gosau basin (Northern Calcareous Alps, Austria). Int J Earth Sci, 90, 714–726.Google Scholar
  127. Wagreich, M., & Faupl, P. (1994). Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria). Palaeogeogr Palaeoclimatol Palaeoecol, 110, 235–254.Google Scholar
  128. Weltje, G. J., & von Eynatten, H. (2004). Quantitative provenance analysis of sediments: review and outlook. Sediment Geol, 171, 1–11.Google Scholar
  129. Woletz, G. (1967). Schwermineralvergesellschaftungen aus ostalpinen Sedimentationsbecken der Kreidezeit. Geologische Rundschau, 56, 308–320.Google Scholar
  130. Wölfler, A., Dekant, Ch., Danišík, M., Kurz, W., Dunkl, I., Putiš, M., et al. (2008). Late stage differential exhumation of crustal blocks in the central Eastern Alps: evidence from fission track and (UTh)/He thermochronology. Terra Nova, 20, 378–384.Google Scholar
  131. Babić, L., & Zupanič, J. (1978). Late Mesozoic of Ivanščica [In Croatian]. In L. Babić, & V. Jelaska (Eds.), Vodič ekskurzije 3. Skupa sedimentologa Jugoslavije (pp. 11–23). Zagreb: Croatian Geological Society.Google Scholar
  132. Zupanič, J. (1981). Non-carbonate detritus from arenite sediments of Maastrichtian Vivodina Flysch (Žumberak, Western Dinarides) [In Croatian with English summary]. Geološki vjesnik Zagreb, 34, 109–120.Google Scholar
  133. Zupanič, J., Babić, L., & Crnjaković, M. (1981). Lower Cretaceous basinal clastics (Oštrc Formation) in the Mt. Ivanščica (Northwestern Croatia) [In Croatian with English summary]. Acta Geologica Zagreb, 11, 1–44.Google Scholar

Copyright information

© Swiss Geological Society 2012

Authors and Affiliations

  • Borna Lužar-Oberiter
    • 1
  • Tamás Mikes
    • 2
    • 3
    • 4
  • István Dunkl
    • 2
  • Ljubomir Babić
    • 1
  • Hilmar von Eynatten
    • 2
  1. 1.Department of Geology, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Abteilung Sedimentologie/UmweltgeologieGeowissenschaftliches Zentrum der Universität GöttingenGöttingenGermany
  3. 3.Institut für GeowissenschaftenGoethe-Universität FrankfurtFrankfurt am MainGermany
  4. 4.Biodiversität und Klima Forschungszentrum (BiK-F)Frankfurt am MainGermany

Personalised recommendations