Advertisement

Swiss Journal of Geosciences

, Volume 103, Issue 3, pp 407–426 | Cite as

Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland

  • Frank PreusserEmail author
  • Jürgen M. Reitner
  • Christian Schlüchter
Article

Abstract

Overdeepened valleys and basins are commonly found below the present landscape surface in areas that were affected by Quaternary glaciations. Overdeepened troughs and their sedimentary fillings are important in applied geology, for example, for geotechnics of deep foundations and tunnelling, groundwater resource management, and radioactive waste disposal. This publication is an overview of the areal distribution and the geometry of overdeepened troughs in the Alps and their foreland, and summarises the present knowledge of the age and potential processes that may have caused deep erosion. It is shown that overdeepened features within the Alps concur mainly with tectonic structures and/or weak lithologies as well as with Pleistocene ice confluence and partly also diffluence situations. In the foreland, overdeepening is found as elongated buried valleys, mainly oriented in the direction of former ice flow, and glacially scoured basins in the ablation area of glaciers. Some buried deeply incised valleys were generated by fluvial down-cutting during the Messinian crisis but this mechanism of formation applies only for the southern side of the Alps. Lithostratigraphic records and dating evidence reveal that overdeepened valleys were repeatedly occupied and excavated by glaciers during past glaciations. However, the age of the original formation of (non-Messinian) overdeepened structures remains unknown. The mechanisms causing overdeepening also remain unidentified and it can only be speculated that pressurised meltwater played an important role in this context.

Keywords

Glaciations Erosion Sediments Overdeepening Alps Quaternary 

Notes

Acknowledgments

We thank Helene Pfalz-Schwingenschlögl for drawing most of the figures in this manuscript. Andreas Dehnert, Christoph Janda, and Johannes Reischer provided technical support to create Fig. 2. Information on the location of overdeepened features was kindly provided by Gerhard Doppler and Ernst Kroemer for Bavaria, and by Giovanni Monegato for Northern Italy. The authors are indebted to Urs Fischer, Wilfried Haeberli, Mads Huuse, Oliver Kempf, Sally Lowick, John Menzies, and Michael Schnellmann for their constructive comments and suggestions on earlier versions of the manuscript.

References

  1. Alley, R. B., Lawson, D. E., Larson, G. J., Evenson, E. B., & Baker, G. S. (2003). Stabilizing feedbacks in glacier-bed erosion. Nature, 424, 758–760.CrossRefGoogle Scholar
  2. Anderson, R. S., Molnar, P., & Kessler, M. A. (2006). Features of glacial valley profiles simply explained. Journal of Geophysical Research, 111, F01004.CrossRefGoogle Scholar
  3. Anselmetti, F. S., Drescher-Schneder, R., Furrer, H., Graf, H. R., Lowick, S., Preusser, F., & Riedi, M. A. (2010). A ~180’000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland). Swiss Journal of Geosciences, 103 (in press).Google Scholar
  4. Bader, K. (1979). Extraktionstiefen würmzeitlicher und alter Gletscher in Südbayern. Eiszeitalter und Gegenwart, 29, 49–61.Google Scholar
  5. Bavec, M., Tulaczyk, S. M., Mahan, S. A., & Stock, G. M. (2004). Late Quaternary glaciation of the Upper Soca River Region (Southern Julian Alps, NW Slovenia). Sedimentary Geology, 165, 265–283.CrossRefGoogle Scholar
  6. Benn, D. I., & Evans, D. J. A. (1998). Glaciers and glaciation, Arnold, London, 734 p.Google Scholar
  7. Berger, J. P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., et al. (2005). Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. International Journal of Earth Sciences, 94, 697–710.CrossRefGoogle Scholar
  8. Bini, A. (1997). Stratigraphy, chronology and paleogeography of Quaternary deposits of the area between the Ticino and Olona rivers (Italy–Switzerland). Geologia Insubrica, 2, 21–46.Google Scholar
  9. Bini, A., Cita, M. B., & Gaetani, M. (1978). Southern alpine lakes. Hypothesis of an erosional origin related to the Messinian entrenchment. Marine Geology, 27, 271–288.CrossRefGoogle Scholar
  10. Bini, A., Corbari, D., Falletti, P., Fassina, M., Perotti, C. R., & Piccin, A. (2007). Morphology and geological settino of Iseo Lake (Lombardy) through multibeam bathymetry and high-resolution seismic profiles. Swiss Journal of Geosciences, 100, 23–40.CrossRefGoogle Scholar
  11. Bini, A., & Zuccoli, L. (2004). Glacial history of the southern side of the central Alps, Italy. In J. Ehlers & P. Gibbard (Eds.), Quaternary glaciations—extent and chronology (pp. 195–200). Amsterdam: Elsevier.CrossRefGoogle Scholar
  12. Blüm, W., & Wyssling, G. (2007). Ur-Sihl und Richterswiler Gletschertal, Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, 31 p.Google Scholar
  13. Bolliger, T., Fejfar, O., Graf, H. R., & Kälin, D. (1996). Preliminary report on new findings of Pliocene mammals from the higher ‘‘Deckenshotter’’ of the Irchel (Kt Zurich, Switzerland). Eclogae geologicae Helvetiae, 89, 1043–1048.Google Scholar
  14. Brozovic, N., Burbank, D. W., & Meigs, A. J. (1997). Climatic limits on landscape development in the northwestern Himalaya. Science, 276, 571–574.CrossRefGoogle Scholar
  15. Brückl, E., Brückl, J., Chwatal, W., & Ullrich, C. (2010). Deep alpine valleys—examples of geophysical explorations in Austria. Swiss Journal of Geosciences, 103 (in press).Google Scholar
  16. Brückl, E., & Ullrich, C. (2001). Exploration of Alpine valleys with seismic and gravimetric methods. Österreichische Beiträge zur Meteorologie und Geophysik, 26, 145–149.Google Scholar
  17. Burgschwaiger, E., & Schmid, C. (2001). Seismostratigrafische Untersuchungen der Talfüllung des oberen Trauntales bei Ebensee. In C. Hammerl, W. Lenhardt, R. Steinacker, & P. Steinhauser (Eds.), Die Zentralanstalt für Meteorologie und Geodynamik (pp. 792–797). Graz: Leykam.Google Scholar
  18. Cadoppi, P., Giardino, M., & Perrone, G. (2007). Litho-structural control, morphotectonics, and deep-seated gravitational deformations in the evolution of the Alpine relief: a case study in the lower Susa Valley (Italian Western Alps). Quaternary International, 171(172), 143–159.CrossRefGoogle Scholar
  19. Caporali, A., Aichhorn, C., Barlik, M., Becker, M., Fejes, I., Gerhatova, L., et al. (2009). Surface kinematics in the Alpine–Carpathian–Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics, 474, 295–321.CrossRefGoogle Scholar
  20. Carniel, P., & Riehl-Herwirsch, G. (1983). Endbericht über die im Jahre 1982 durchgeführten refraktionsseismischen Untersuchungen. Erforschung des Naturraumpotentials ausgewählter Tallandschaften in Kärnten: Unteres Gailtal, Endbericht 1982. Bund/Bundesländer-Rohstoffprojekt K-C-011d/82, Scientific Archive of the Geological Survey of Austria, 10 pp.Google Scholar
  21. Cederbom, C. E., Sinclair, H. D., Schlunegger, F., & Rahn, M. K. (2004). Climate-induced rebound and exhumation of the European Alps. Geology, 32, 709–712.CrossRefGoogle Scholar
  22. Champagnac, J. D., Molnar, P., Anderson, R. S., Sue, C., & Delacou, B. (2007). Quaternary erosion-induced isostatic rebound in the western Alps. Geology, 35, 195–198.CrossRefGoogle Scholar
  23. de Beaulieu, J. L., Andrieu-Ponel, V., Reille, M., Grüger, E., Tzedakis, C., & Svobodova, H. (2001). An attempt at correlation between the Velay pollen sequence and the Middle Pleistocene stratigraphy from central Europe. Quaternary Science Reviews, 20, 1593–1602.CrossRefGoogle Scholar
  24. de Beaulieu, J. L., & Reille, M. (1984). A long upper-Pleistocene pollen record from les Echets near Lyon, France. Boreas, 13, 111–132.CrossRefGoogle Scholar
  25. Dehnert, A., Preusser, F., Kramers, J. D., Akçar, N., Kubik, P. W., Reber, R., & Schlüchter, C. (2010). A multi-dating approach applied to proglacial sediments attributed to the Most Extensive Glaciation of the Swiss Alps. Boreas, 39, 620–632.Google Scholar
  26. Dehnert, A., & Schlüchter, C. (2008). Sediment burial dating using terrestrial cosmogenic nuclides. Eiszeitalter & Gegenwart (Quaternary Science Journal), 57, 210–225.Google Scholar
  27. Drescher-Schneider, R. (2000). Die Vegetations- und Klimaentwicklung im Riss/Würm-Interglazial und im Früh- und Mittelwürm in der Umgebung von Mondsee. Ergebnisse der pollenanalytischen Untersuchungen. Mitteilungen der Kommision für Quartärforschung der Österreichischen Akademie der Wissenschaften, 12, 39–92.Google Scholar
  28. Eberle, M. (1987). Zur Lockergesteinsfüllung des St. Galler und Liechtensteiner Rheintales. Eclogae geologicae Helveticae, 80, 193–206.Google Scholar
  29. Ehlers, J., & Gibbard, P. L. (Eds.), (2004). Quaternary glaciations—extent and chronology, Part I Europe. (pp. 475) Elsevier, Amsterdam.Google Scholar
  30. Ehlers, J., Meyer, K.-D., & Stephan, H.-J. (1984). Pre-Weichselian glaciations of north-west Europe. Quaternary Science Reviews, 3, 1–40.CrossRefGoogle Scholar
  31. Eyles, N., & de Broekert, P. (2001). Glacial tunnel valleys in the Eastern Goldfields of Western Australia cut below the Late Paleozoic Pilbara ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology, 171, 29–40.CrossRefGoogle Scholar
  32. Felber, M., & Bini, A. (1997). Seismic survey in alpine and prealpine valleys of Ticino (Switzerland): evidences of a Late-Tertiary fluvial origin. Geologia Insubrica, 2, 47–67.Google Scholar
  33. Felber, M., Veronese, L., Cocco, S., Frei, W., Nardin, M., Oppizzi, P., et al. (1998). Indagini sismiche e geognostiche nelle valli del Trentino meridionale (Val d’Adige,Valsugana, Valle del Sarca, Valle del Chiese), Italia. Studi Trentini di Scienze Naturali – Acta Geologica, 75, 3–52.Google Scholar
  34. Fiebig, M. (2003). Lithofazielle Untersuchungen an pleistozänen Sedimenten im östlichen Rheingletschergebiet. Zeitschrift der deutschen geologischen Gesellschaft, 154, 301–342.Google Scholar
  35. Finckh, P. (1978). Are southern Alpine lakes former Messinian canyons?—Geophysical evidence for preglacial erosion in the southern alpine lakes. Marine Geology, 27, 289–302.CrossRefGoogle Scholar
  36. Finckh, P., Kelts, K., & Lambert, A. (1984). Seismic stratigraphy and bedrock forms in perialpine lakes. Bulletin of the Geological Society of America, 95, 1118–1128.CrossRefGoogle Scholar
  37. Fourneaux, J. C. (1976). Les formations quaternaire de la vallée de lIsère dans l’ombilic de Grenoble. Geologie Alpine, 52, 32–71.Google Scholar
  38. Fourneaux, J. C. (1979). Les resources en eau liies aux surcreusements glaciaires dan les Alpes Francaises. Eiszeitalter und Gegenwart, 29, 123–133.Google Scholar
  39. Frank, H. (1979). Glazial übertiefte Täler im Bereich des Isar-Loisach-Gletschers. Eiszeitalter und Gegenwart, 29, 77–99.Google Scholar
  40. Frisch, W., Dunkl, I., & Kuhlemann, J. (2000). Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics, 59, 239–265.CrossRefGoogle Scholar
  41. Frisch, W., Kuhlemann, J., Dunkl, I., & Brügel, A. (1998). Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics, 297, 1–15.CrossRefGoogle Scholar
  42. Froitzheim, N., Plasienka, D., & Schuster, R. (2008). Alpine tectonics of the Alps and Western Carapathians. In T. McCann (Ed.), The geology of Central Europe (pp. 1141–1232). London: Geological Society.Google Scholar
  43. Geyh, M. A. (2008). 230Th/U dating of interglacial and interstadial fen peat and lignite: Potential and limits. Eiszeitalter & Gegenwart (Quaternary Science Journal), 57, 77–94.Google Scholar
  44. Geyh, M. A., & Müller, H. (2005). Numerical Th-230/U dating and a palynological review of the Holsteinian/Hoxnian Interglacial. Quaternary Science Reviews, 24, 1861–1872.CrossRefGoogle Scholar
  45. Graf, H. R. (1993). Die Deckenschotter der zentralen Nordschweiz. PhD Thesis, ETH Zürich, Nr. 10205, 151 pp.Google Scholar
  46. Graf, H. R. (2009). Die Deckenschotter zwischen Bodensee und Klettgau (Schweiz, Baden Württemberg). Eiszeitalter & Gegenwart (Quaternary Science Journal), 58, 12–53.Google Scholar
  47. Grenerczy, G., Sella, G., Stein, S., & Kenyeres, A. (2005). Tectonic implications of the GPS velocity field in the northern Adriatic region. Geophysical Research Letter, 32, L16311.CrossRefGoogle Scholar
  48. Grube, F. (1979). Übertiefte Rinnen im Hamburger Raum. Eiszeitalter und Gegenwart, 29, 157–172.Google Scholar
  49. Gruber, A., Strauhal, T., Prager, C., Reitner, J. M., Brandner, R., & Zangerl, C. (2009). Die “Butterbichl-Gleitmasse”—eine große fossile Massenbewegung am Südrand der Nördlichen Kalkalpen (Tirol, Österreich). Bulletin für angewandte Geologie, 14, 103–134.Google Scholar
  50. Gruber, W., & Weber, F. (2004). Ein Beitrag zur Kenntnis des glazial übertieften Inntals westlich von Innsbruck. Sitzungsberichte Abteilung I der Österreichischen Akademie der Wissenschaften, 210, 3–30.Google Scholar
  51. Grüger, E. (1979). Spätriss, Riss/Würm und Frühwürm am Samerberg in Oberbayern—ein vegetationsgeschichtlicher Beitrag zur Gliederung des Jungpleistozäns. Geologica Bavarica, 80, 5–64.Google Scholar
  52. Grüger, E. (1983). Untersuchungen zur Gliederung und Vegetationsgeschichte des Mittelpleistozäns am Samerberg in Oberbayern. Geologica Bavarica, 84, 21–40.Google Scholar
  53. Grüger, E., & Schreiner, A. (1993). Riß/Würm- und würmzeitliche Ablagerungen im Wurzacher Becken (Rheingletschergebiet). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 189, 81–117.Google Scholar
  54. Habbe, K. A. (1996). Über glaziale Erosion und Übertiefung. Eiszeitalter und Gegenwart, 46, 99–119.Google Scholar
  55. Haeuselmann, P., Granger, D. E., Jeannin, P.-Y., & Lauritzen, S.–. E. (2007). Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology, 35, 143–146.CrossRefGoogle Scholar
  56. Haldemann, E. G., Haus, H. A., Holliger, A., Liechti, W., Rutsch, R. F., & della Valle, G. (1980). Geologischer Atlas der Schweiz 1:25’000, Blatt 75 Eggiwil (LK 1186).Google Scholar
  57. Haldimann, P. (1978). Quartärgeologische Entwicklung des mittleren Glatttals. Eclogae geologicae Helvetiae, 71, 347–357.Google Scholar
  58. Hallet, B., Hunter, L., & Bogenc, J. (1996). Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Global and Planetary Change, 12, 213–235.CrossRefGoogle Scholar
  59. Hambach, U., Rolf, C., & Schnepp, E. (2008). Magnetic dating of Quaternary sediments, volcanites and archaeological materials: an overview. Eiszeitalter & Gegenwart (Quaternary Science Journal), 57, 25–51.Google Scholar
  60. Hantke, R., & Scheidegger, A. E. (1993). Zur Genese der Aareschlucht (Berner Oberland, Schweiz). Geographica Helvetia, 48, 120–124.Google Scholar
  61. Harbor, J. M. (1992). Numerical modelling of the development of U-shaped valleys by glacial erosion. Geological Society of America Bulletin, 104, 1364–1375.CrossRefGoogle Scholar
  62. Häuselmann, P., Fiebig, M., Kubik, P. W., & Adrian, H. (2007). A first attempt to date the original ‘‘Deckenschotter’’ of Penck and Brückner with cosmogenic nuclides. Quaternary International, 164–165, 33–42.CrossRefGoogle Scholar
  63. Head, M. J., & Gibbard, P. L. (2005). Early Middle Pleistocene transitions: an overview and recommendation for the defining boundary. Geological Society London, Special Publications, 247, 1–18.CrossRefGoogle Scholar
  64. Heim, A. (1919). Geologie der Schweiz (Band 1). Tauchnitz, Leipzig, 704 pp.Google Scholar
  65. Herbst, P., & Riepler, F. (2006). 14C evidence for an Early to Pre-Würmian age for parts of the Salzburger Seeton, Urstein, Salzach Valley, Austria. Austrian Journal of Earth Sciences, 99, 57–61.Google Scholar
  66. Hinderer, M. (2001). Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta, 14, 231–263.CrossRefGoogle Scholar
  67. Hinsch, W. (1979). Rinnen an der Basis des glaziären Pleistozäns in Schleswig-Holstein. Eiszeitalter und Gegenwart, 29, 173–178.Google Scholar
  68. Hooke, R. L. (1991). Positive feedbacks associated with erosion of glacial cirques and overdeepenings. Geological Society of America Bulletin, 103, 1104–1108.CrossRefGoogle Scholar
  69. Hooke, R. L., & Jennings, C. E. (2006). On the formation of the tunnel valleys of the southern Laurentide ice sheet. Quaternary Science Reviews, 25, 1364–1372.CrossRefGoogle Scholar
  70. Hsü, K. J., & Kelts, K. R. (Eds.), (1984). Quaternary Geology of Lake Zurich: an interdisciplinary investigation by deep-lake-drilling. Contributions to Sedimentology, 13, Stuttgart, 210 pp.Google Scholar
  71. Huuse, M., & Lykke-Andersen, H. (2000). Overdeepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. Quaternary Science Reviews, 19, 1233–1253.CrossRefGoogle Scholar
  72. IAEA (International Atomic Energy Agency) (1995). The principles of radioactive waste management. Safety Series 111-F, Wien, 36 pp.Google Scholar
  73. Iverson, N. R. (1995). Processes of erosion. In J. Menzies (Ed.), Modern Glacial environments: processes, dynamics and sediments (pp. 241–260). Oxford: Butterworth-Heinemann.Google Scholar
  74. Jarvis A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org.
  75. Jerz, H. (1979). Das Wolfratshausener Becken, seine glaziale Anlage und Übertiefung. Eiszeitalter und Gegenwart, 29, 63–69.Google Scholar
  76. Jerz, H. (1983). Die Bohrung Samerberg 2 östlich Nußdorf am Inn. Geologica Bavarica, 84, 6–16.Google Scholar
  77. Jerz, H. (1993). Das Eiszeitalter in Bayern. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 243 pp.Google Scholar
  78. Jordan, P., Schwab, M., & Schuler, T. (2008). Digitales Höhenmodell - Am Beispiel der Felsoberfläche der Nordschweiz. Gas Wasser Abwasser, 6, 443–449.Google Scholar
  79. Jørgensen, F., & Sandersen, P. B. E. (2009). Buried valley mapping in Denmark: evaluating mapping method constraints and the importance of data density. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 160, 211–223.CrossRefGoogle Scholar
  80. Kelly, M. A., Buoncristiani, J.-F., & Schlüchter, Ch. (2004). A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. Eclogae geologicae Helvetiae, 97, 57–75.CrossRefGoogle Scholar
  81. Klasen, N., Fiebig, M., Preusser, F., Reitner, J., & Radtke, U. (2007). Luminescence dating of proglacial sediments from the Eastern Alps. Quaternary International, 164–165, 21–32.CrossRefGoogle Scholar
  82. Kluiving, S. J., Bosch, J. H. A., Ebbing, J. H. J., Mesdag, C. S., & Westerhoff, R. S. (2003). Onshore and offshore seismic and lithostratigraphic analysis of a deeply incised Quaternary buried valley system in the Northern Netherlands. Journal of Applied Geophysics Volume, 53, 249–271.CrossRefGoogle Scholar
  83. Kock, S., Kramers, J. D., Preusser, F., & Wetzel, A. (2009). Dating of Late Pleistocene deposits of River Rhine using Uranium series and luminescence methods: potential and limitations. Quaternary Geochronology, 4, 363–373.CrossRefGoogle Scholar
  84. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., & Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.CrossRefGoogle Scholar
  85. Kristensen, T. B., Huuse, M., Piotrowski, J. A., & Clausen, O. R. (2007). A morphometric analysis of tunnel valley in the eastern North Sea based on 3D seismic data. Journal of Quaternary Science, 22, 801–815.CrossRefGoogle Scholar
  86. Kristensen, T. B., Piotrowski, J. A., Huuse, M., Clausen, O. R., & Hamberg, L. (2008). Time-transgressive tunnel valley formation indicated by infill sediment structure, North Sea–the role of glaciohydraulic supercooling. Earth Surface Processes and Landforms, 33, 546–559.CrossRefGoogle Scholar
  87. Krohn, C. F., Larsen, N. K., Kronborg, C., Nielsen, O. B., & Knudsen, K. L. (2009). Litho- and chronostratigraphy of the Late Weichselian in Vendsyssel, northern Denmark, with special emphasis on tunnel valley infill in relation to a receding ice margin. Boreas, 38, 811–833.CrossRefGoogle Scholar
  88. Kuhlemann, J., Frisch, W., Dunkl, I., Székely, B., & Spiegel, C. (2001). Miocene shifts of the drainage divide in the Alps and their foreland basin. Zeitschrift für Geomorphologie NF, 45, 239–265.Google Scholar
  89. Kuhlemann, J., & Kempf, O. (2002). Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sedimentary Geology, 152, 45–78.CrossRefGoogle Scholar
  90. Kühni, A., & Pfiffner, O. A. (2001a). Drainage patterns and tectonic forcing: a model study for the Swiss Alps. Basin Research, 13, 169–197.CrossRefGoogle Scholar
  91. Kühni, A., & Pfiffner, O. A. (2001b). The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250-m DEM. Geomorphology, 41, 285–307.CrossRefGoogle Scholar
  92. Kuster, H., & Meyer, K. D. (1979). Glaziäre Rinnen im mittleren und nördlichen Niedersachsen. Eiszeitalter und Gegenwart, 29, 135–156.Google Scholar
  93. Le Heron, D. P., Craig, J., & Etienne, J. L. (2009). Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East. Earth Science Reviews, 93, 47–76.CrossRefGoogle Scholar
  94. Lister, G. S. (1984). Deglaciation of the Lake Zurich area: a model based on the sedimentological record. Contributions to Sedimentology 13, Stuttgart, 31–58.Google Scholar
  95. Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J., & Wansa, S. (2007). Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalter & Gegenwart (Quaternary Science Journal), 56, 7–65.Google Scholar
  96. Lund, S., Stoner, J. S., Channell, J. E. T., & Acton, G. (2006). A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Physics of the Earth and Planetary Interiors, 156, 194–204.CrossRefGoogle Scholar
  97. Lutz, R., Kalka, S., Gaedicke, C., Reinhardt, L., & Winsemann, J. (2009). Pleistocene tunnel valleys in the German North Sea: spatial distribution and morphology. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 160, 225–235.CrossRefGoogle Scholar
  98. Meigs, A., & Sauber, J. (2000). Southern Alaska as an example of the long-term consequences of mountain building under the influence of glaciers. Quaternary Science Reviews, 19, 1543–1562.CrossRefGoogle Scholar
  99. Menzies, J. (1995). Hydrology of glaciers. In J. Menzies (Ed.), Modern glacial environments: processes, dynamics and sediments (pp. 197–239). Oxford: Butterworth-Heinemann.Google Scholar
  100. Menzies, J., & Shilts, W. W. (1996). Subglacial environments. In J. Menzies (Ed.), Past glacial environments: sediments, forms and techniques (pp. 15–136). Oxford: Butterworth-Heinemann.Google Scholar
  101. Meyer, K.-D. (1965). Das Quartärprofil am Steilufer der Elbe bei Lauenburg. Eiszeitalter und Gegenwart, 16, 47–60.Google Scholar
  102. Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 346, 29–34.CrossRefGoogle Scholar
  103. Montgomery, D. R. (2002). Valley formation by fluvial and glacial erosion. Geology, 30, 1047–1050.CrossRefGoogle Scholar
  104. Mooers, H. D. (1989). On the formation of the tunnel valleys of the superior lobe, central Minnesota. Quaternary Research, 32, 24–35.CrossRefGoogle Scholar
  105. Moscariello, A., Pugin, A., Wildi, W., Beck, C., Chapron, E., de Batist, M., et al. (1998). Post-wuerm deglaciation in the lacustrine environments of the western end of the Lake Geneva basin (western Switzerland and France). Eclogae geologicae Helvetiae, 91, 185–201.Google Scholar
  106. Müller, F. (1938). Geologie der Engelhörner, der Aareschlucht und der Kalkkeile bei Innertkirchen. Beiträge zur geologischen Karte der Schweiz N.F., 74, 55 pp.Google Scholar
  107. Müller, B. U. (1995). Das Walensee-/Seeztal—eine Typusregion alpiner Talgenese. Vom Enstehen und Vergehen des großen Rheintal/Zürichsees. Unpublished Diplom Thesis, Geologisches Institut der Universität Bern, 219 pp.Google Scholar
  108. Müller, G., & Gees, R. A. (1968). Origin of the Lake Constance basin. Nature, 217, 836.CrossRefGoogle Scholar
  109. Müller, U. C., Pross, J., & Bibus, E. (2003). Vegetation response to rapid climate change in Central Europe during the past 140, 000 yr based on evidence from the Füramoos pollen record. Quaternary Research, 59, 235–245.CrossRefGoogle Scholar
  110. Müller, M., & Unger, H. J. (1973). Das Molasserelief im Bereich des würmzeitlichen Inn-Vorlandgletschers mit Bemerkungen zur Stratigraphie und Paläogeographie des Pleistozäns. Geologica Bavarica, 69, 49–88.Google Scholar
  111. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., et al. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989–992.CrossRefGoogle Scholar
  112. Nemes, F., Neubauer, F., Cloetingh, S., & Genser, J. (1997). The Klagenfurt Basin in the Eastern Alps: an intra-orogenic decoupled flexural basin? Tectonophysics, 282, 189–203.CrossRefGoogle Scholar
  113. Nicoud, G., Monjuvent, G., & Maillet-Guy, G. (1987). Controle du comblement quartérnaire des valléees alpines du nord par la dynamique lacustre. Géologie Alpine Memoire HS, 13, 457–468.Google Scholar
  114. Nitsche, F. O., Monin, G., Marillier, F., Graf, H. R., & Ansorge, J. (2001). Reflection seismic study of Cenozoic sediments in an overdeepened valley of northern Switzerland: the Birrfeld area. Eclogae geologicae Helveticae, 94, 363–371.Google Scholar
  115. Oberhauser, R., Draxler, I., Krieg, W., & Resch W. (1991). Erläuterungen zu Blatt 110 St. Gallen Süd und 111 Dornbirn Süd. Geologische Bundesanstalt, Wien, 72 pp.Google Scholar
  116. Ortner, H. (1996). Deformation und Diagenese im Unterinntaler Tertiär (zwischen Rattenberg und Durchholzen) “und seinem Rahmen”. Unpublished PhD-Thesis, Universität Innsbruck, 234 pp.Google Scholar
  117. Ortner, H., & Stingl, F. (2001). Facies and basin development of the Oligocene in the Lower Inn Valley, Tyrol/Bavaria. In: Piller, W.E., & Rasser, M.W. (Eds.), Paleogene of the Eastern Alps, Österreichische Akademie der Wissenschaften, Schriftenreihe der erdwissenschaftlichen Kommission 14, Wien, 153–197.Google Scholar
  118. Ortner, H., & Stingl, V. (2003). Field Trip E1: Lower Inn Valley (Southern margin of Northern Calcareous Alps, TRANSALP Traverse). Geologisch Paläontologische Mitteilungen Innsbruck, 26, 2–19.Google Scholar
  119. Pellegrini, G. B., Surian, N., Albanese, D., Degli Alessandrini, A., & Zambiano, R. (2004). Le grandi frane pleistoceniche e paleoidrografica dlla Valle del Piave nel Canale Quero (Prealpi Vente). Studi trent. Sci. Nat., Acta Geol., 81, 87–104.Google Scholar
  120. Penck, A. (1905). Glacial features in the surface of the Alps. Journal of Geology, 13, 1–19.CrossRefGoogle Scholar
  121. Penck, A., & Brückner, E. (1909). Die Alpen im Eiszeitalter. Tauchnitz, Leipzig, 1157 pp.Google Scholar
  122. Petit, C., Campy, M., Chaline, J., & Bonvalot, J. (1996). Major palaeohydrographic changes in Alpine foreland during the Pliocene–Pleistocene. Boreas, 25, 131–143.CrossRefGoogle Scholar
  123. Pfiffner, O. A., Heitzmann, P., Lehner, P., Frei, W., Pugin, A., & Felber, M. (1997). Incision and backfilling of Alpine valleys: Pliocene, Pleistocene and Holocene processes. In O. A. Pfiffner, P. Lehner, P. Heitzmann, S. Mueller, & A. Steck (Eds.), Deep Structure of the Swiss Alps: results of NRP 20 (pp. 265–288). Basel: Birkhäuser.Google Scholar
  124. Piotrowski, J. A. (1994). Tunnel-valley formation in northwest Germany - geology, mechanisms of formation and subglacial bed conditions for the Bornhöved tunnel valley. Sedimentary Geology, 89, 107–141.CrossRefGoogle Scholar
  125. Plan, L., Grasemann, B., Spötl, C., Decker, K., Boch, R., & Kramers, J. (2010). Neotectonic extrusion of the Eastern Alps: Constraints from U/Th dating of tectonically damaged speleothems. Geology, 34, 483–486.CrossRefGoogle Scholar
  126. Porter, S. C. (1989). Some geological implications of average Quaternary glacial conditions. Quaternary Research, 32, 245–261.CrossRefGoogle Scholar
  127. Poscher, G. (1993). Neuergebnisse der Quartärforschung in Tirol. Arbeitstagung der Geologischen Bundesanstalt 1993, Wien, 7–27.Google Scholar
  128. Praeg, D. (2003). Seismic imaging of mid-Pleistocene tunnel-valleys in the North Sea Basin–high resolution from low frequencies. Journal of Applied Geophysics, 53, 273–298.CrossRefGoogle Scholar
  129. Preusser, F. (2004). Towards a chronology of the Late Pleistocene in the northern Alpine Foreland. Boreas, 33, 195–210.CrossRefGoogle Scholar
  130. Preusser, F., Chithambo, M. L., Götte, T., Martini, M., Ramseyer, K., Sendezera, E. J., et al. (2009). Properties of quartz related to its use as a luminescence dosimeter. Earth Science Reviews, 97, 196–226.CrossRefGoogle Scholar
  131. Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., et al. (2008). Luminescence dating: basics, methods and applications. Eiszeitalter & Gegenwart (Quaternary Science Journal), 57, 95–149.Google Scholar
  132. Preusser, F., Drescher-Schneider, R., Fiebig, M., & Schlüchter, Ch. (2005). Re-interpretation of the Meikirch pollen record, Swiss Alpine Foreland, and implications for Middle Pleistocene chronostratigraphy. Journal of Quaternary Science, 20, 607–620.CrossRefGoogle Scholar
  133. Preusser, F., & Fiebig, M. (2009). European Middle Pleistocene loess chronostratigraphy: some considerations based on evidence from the Wels site, Austria. Quaternary International, 198, 37–45.CrossRefGoogle Scholar
  134. Pugin, A. (1988). Carte des isohypses de la base des sédiments du Quaternaire en Suisse occidentale, avec quelques commentaires. Geologische Berichte Nr. 3., Landeshydrologie und –geologie Bern, Bundesamt für Umweltschutz, Bern, 20 pp.Google Scholar
  135. Pugin, A., Bézat, E., Weidmann, M., & Wildi, W. (1993). Le basin d’Ecoteaux (Vaud, Suisse): Témoin de trois cycles glaciaires quaternaires. Eclogae geologicae Helvetiae, 86, 343–354.Google Scholar
  136. Ratschbacher, L., Frisch, W., Linzer, H.-G., & Merle, O. (1991). Lateral extrusion in the Eastern Alps, part II: structural analysis. Tectonics, 10, 257–271.CrossRefGoogle Scholar
  137. Reitner, J. M. (2007). Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quaternary International, 164–165, 64–84.CrossRefGoogle Scholar
  138. Reitner, J. M., Gruber, W., Römer, A., & Morwetz, R. (2010). Alpine overdeepenings and paleo-ice flow changes: an integrated geophysical-sedimentological case study from Tyrol (Austria). Swiss Journal of Geosciences, 103. (in press).Google Scholar
  139. Salcher, B. C., Hinsch, R., & Wagreich, M. (2010). High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria. Geomorphology, 122, 283–293.CrossRefGoogle Scholar
  140. Sandersen, P. B. E., Jøgensen, F., Larsen, N. K., Westergaard, J. H., & Auken, E. (2009). Rapid tunnel valley formation beneath the receding Late Weichselian ice sheet in Vendsyssel, Denmark. Boreas, 38, 834–851.CrossRefGoogle Scholar
  141. Schlüchter, C. (1979). Übertiefte Talabschnitte im Berner Mittelland zwischen Alpen und Jura (Schweiz). Eiszeitalter und Gegenwart, 29, 101–113.Google Scholar
  142. Schlüchter, C. (1983). Die Bedeutung der angewandten Geologie für die eiszeitgeologische Forschung in der Schweiz. Physische Geographie, 11, 59–72.Google Scholar
  143. Schlüchter, C. (1989a). The most complete Quaternary record of the Swiss Alpine Foreland. Palaeogeography, Palaeoclimatology, Palaeoecology, 72, 141–146.CrossRefGoogle Scholar
  144. Schlüchter, C. (1989b). Thalgut: Ein umfassendes eiszeitstratigraphisches Referenzprofil im nördlichen Alpenvorland. Eclogae geologicae Helvetiae, 82, 277–284.Google Scholar
  145. Schlüchter, C. (2004). The Swiss glacial record—a schematic summary. In J. Ehlers & P. L. Gibbard (Eds.), Quaternary glaciations—extent and chronology (pp. 413–418). Amsterdam: Elsevier.CrossRefGoogle Scholar
  146. Schlüchter, C. (Ed.) (2010). Die Schweiz während des letzteiszeitlichen Maximums (LGM) (Map 1:500.000). swisstopo, Bern.Google Scholar
  147. Schlunegger, F., Melzer, J., & Tucker, G. (2001). Climate, exposed source rock lithologies, crustal uplift and surface erosion: a theoretical analysis calibrated with data from the Alps/North Alpine Foreland Basin system. International Journal of Earth Sciences, 90, 484–499.CrossRefGoogle Scholar
  148. Schmid, S. M., Fuegenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae geologicae Helvetiae, 97, 93–117.CrossRefGoogle Scholar
  149. Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schoenborn, G., & Kissling, E. (1996). Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics, 15, 1036–1064.CrossRefGoogle Scholar
  150. Schmid, C., Suette, G., & Weber, F. (2005). Erste Ergebnisse reflexionsseismischer Messungen im Ennstal zwischen Liezen und Weng (Steiermark). Jahrbuch der Geologischen Bundesanstalt, 145, 107–114.Google Scholar
  151. Schmöller, R., Walach, G., Schmid, C., Frühwirth, R., Hepberger, M., Hartmann, G., & Morawetz, R. (1991). Geophysikalische Erkundung der tektonischen Verhältnisse des westlichen Villacher Beckens als Basis für die Suche nach Tiefengrundwasser. unpubl. report KA-36/F-89, Archive of the Geological Survey of Austria, 17 pp.Google Scholar
  152. Schnellmann, M., Anselmetti, F. S., Giardini, D., & McKenzie, J. A. (2005). Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology, 52, 271–289.CrossRefGoogle Scholar
  153. Scholz, D., & Hoffmann, D. (2008). 230Th/U-dating of fossil corals and speleothems. Eiszeitalter & Gegenwart (Quaternary Science Journal), 57, 52–76.Google Scholar
  154. Schoop, R. W., & Wegener, H. (1984). Einige Ergebnisse der seismischen Untersuchungen auf dem Bodensee. Bulletin der Vereinigung Schweizerischer Petroleum-Geologen und –Ingenieuren, 50/118, 55–61.Google Scholar
  155. Schreiner, A. (1979). Zur Entstehung des Bodenseebeckens. Eiszeitalter und Gegenwart, 20, 71–76.Google Scholar
  156. Small, E. E., & Anderson, R. S. (1998). Pleistocene relief production in Laramide mountain ranges, western United States. Geology, 26, 123–126.CrossRefGoogle Scholar
  157. Spendlingwimmer, R., & Heiss, G. (1998). Hydrogeologische Untersuchungen für das Grundwasserschongebiet Petzen - Jaunfeld 1993/95. Wasserkunde, Sonderheft, 3, 81–163.Google Scholar
  158. Spötl, C., & Mangini, A. (2006). U/Th age constraints on the absence of ice in the central Inn Valley (eastern Alps, Austria) during Marine Isotope Stages 5c to 5a. Quaternary Research, 66, 167–175.CrossRefGoogle Scholar
  159. Stackebrandt, W. (2009). Subglacial channels of Northern Germany–a brief review. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 160, 203–210.CrossRefGoogle Scholar
  160. Talbot, C. J. (1999). Ice ages and nuclear waste isolation. Engineering Geology, 52, 177–192.CrossRefGoogle Scholar
  161. Tzedakis, P. C., Andrieu, V., de Beaulieu, J.-L., Birks, H. J. B., Crowhurst, S., Follieri, M., et al. (2001). Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quaternary Science Reviews, 20, 1583–1592.CrossRefGoogle Scholar
  162. Uggeri, A., Felber, M., Bini, A., Bignasca, C., & Heller, F. (1997). The Valle della Fornace succession. Geologia Insubrica, 2, 69–80.Google Scholar
  163. van Husen, D. (1977). Zur Fazies und Stratigraphie der jungpleistozänen Ablagerungen im Trauntal. Jahrbuch der Geologischen.Bundesanstalt, 120, 1–130.Google Scholar
  164. van Husen, D. (1979). Verbreitung, Ursachen und Füllung glazial übertiefter Talabschnitte an Beispielen in den Ostalpen. Eiszeitalter und Gegenwart, 29, 9–22.Google Scholar
  165. van Husen, D. (1985). Preserved strata of synsedimentary rotated loose sediments formed in a dead ice environment. Bulletin of the Geological society of Denmark, 34, 27–31.Google Scholar
  166. van Husen, D. (1987). Die Entwicklung des Traungletschers während des Würm-Glazials. Mitteilungen der Kommision für Quartärforschung der Österreichischen Akademie der Wissenschaften, 7, 19–35.Google Scholar
  167. van Husen, D. (2000). Geological processes during the Quaternary. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 135–156.Google Scholar
  168. van Husen, D. (2004). Quaternary glaciations in Austria. In J. Ehler & P. L. Gibbarrd (Eds.), Quaternary glaciations—extent and chronology (pp. 1–13). Amsterdam: Elsevier.Google Scholar
  169. van Husen, D., & Draxler, I. (2009). Quartär. In: Pestal, G., Hejl, E., Braunstingl, R. & Schuster, R. (Eds.), Geologische Karte von Salzburg 1:200 000—Erläuterungen. Verlag der Geologischen Bundesanstalt (pp. 107–110). Wien.Google Scholar
  170. van Husen, D., & Mayer, M. (2007). The hole of Bad Aussee, an unexpected overdeepened area in NW Steiermark, Austria. Austrian Journal of Earth Sciences, 100, 128–136.Google Scholar
  171. van Rensbergen, P., de Batist, M., Beck, Ch., & Chapron, E. (1999). High-resolution seismic stratigraphy of glacial to interglacial fill of a deep glacigenic lake: Lake Le Bourget, Northwestern Alps, France. Sedimentary Geology, 128, 99–129.CrossRefGoogle Scholar
  172. van Rensbergen, P., de Batist, M., Beck, Ch., & Manalt, F. (1998). High-resolution seismic stratigraphy of late Quaternary fill of LakeAnnecy (northwestern Alps): evolution from glacial to interglacial sedimentary processes. Sedimentary Geology, 117, 71–96.CrossRefGoogle Scholar
  173. Veit, E. (1973). Das Ergebnis der reflexionsseismischen Schussbohrungen im Rosenheimer Seetonbecken. In: Wolff, H.(ed.), Geologische Karte von Bayern 1:25.000, Erläuterungen zum Blatt8238 Neubeuern (pp. 282–285), München.Google Scholar
  174. Vrabec, M., Pavlovcic Preseren, P., & Stopar, B. (2006). GPS study (1996–2002) of active deformation along the Periadriatic fault system in northwestern Slovenia: tectonic model. Geologica Carpathica, 57, 57–65.Google Scholar
  175. Walach, G. (1993). Beiträge der Gravimetrie zur Erforschung der Tiefenstruktur alpiner Talfurchen. Österreichische Beiträge zu Meteorologie und Geophysik, 8, 83–98.Google Scholar
  176. Weber, F., & Schmid, C. (1992). Reflexions- und refraktionsseismische Messungen im Zillertal und deren quartärgeologische Aussagen. Mitteilungen der Österreichischen Geologischen Gesellschaft, 84, 205–221.Google Scholar
  177. Weber, F., Schmid, C., & Figala, G. (1990). Vorläufige Ergebnisse Reflexionsseismischer Messungen im Quartär des Inntals/Tirol. Zeitschrift für Gletscherkunde und Glazialgeologie, 26, 121–144.Google Scholar
  178. Welten, M. (1982). Pollenanalystische Untersuchungen im Jüngeren Quartär des nördlichen Alpenvorlandes der Schweiz. Beiträge zur Geologischen Karte der Schweiz NF 156, 174 pp.Google Scholar
  179. Welten, M. (1988). Neue pollenanalytische Ergebnisse über das Jüngere Quartär des nördlichen Alpenvorlandes der Schweiz (Mittel- und Jungpleistozän). Beiträge zur Geologischen Karte der Schweiz NF 162, 40 pp.Google Scholar
  180. Wildi, W. (1984). Isohypsenkarte der quartären Felstäler in der Nord- und Ostschweiz, mit kurzen Erläuterungen. Eclogae geologicae Helvetiae, 77, 541–551.Google Scholar
  181. Willett, S. D., Schlunegger, F., & Picotti, V. (2006). Messinian climate change and erosional destruction of the central European Alps. Geology, 34, 613–616.CrossRefGoogle Scholar
  182. Wohlfarth, B., Gaillard, M.-J., Haeberli, W., & Kelts, K. (1994). Environment and climate in southwestern Switzerland during the last termination, 15–10 ka BP. Quaternary Science Reviews, 13, 361–394.CrossRefGoogle Scholar
  183. Wyssling, G. (2002). Die Ur-Sihl floss einst ins Reusstal. Zur Geologie des Sihltales zwischen Schindellegi und Sihlbrugg. Verein ProSihltal, 52, 1–14.Google Scholar
  184. Zischinsky, U. (1969). Über Bergzerreißung und Talzuschub. Geologische Rundschau, 58, 974–983.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Frank Preusser
    • 1
    Email author
  • Jürgen M. Reitner
    • 2
  • Christian Schlüchter
    • 1
  1. 1.Institut für GeologieUniversität BernBernSwitzerland
  2. 2.Geologische BundesanstaltWienAustria

Personalised recommendations