Advertisement

Swiss Journal of Geosciences

, Volume 103, Issue 2, pp 293–315 | Cite as

Bentho-planktonic evidence from the Austrian Alps for a decline in sea-surface carbonate production at the end of the Triassic

  • Marie-Emilie Clémence
  • Silvia GardinEmail author
  • Annachiara Bartolini
  • Guillaume Paris
  • Valérie Beaumont
  • Jean Guex
Article

Abstract

A high-resolution micropalaeontological study, combined with geochemical and sedimentological analyses was performed on the Tiefengraben, Schlossgraben and Eiberg sections (Austrian Alps) in order to characterize sea-surface carbonate production during the end-Triassic crisis. At the end-Rhaetian, the dominant calcareous nannofossil Prinsiosphaera triassica shows a decrease in abundance and size and this is correlated with a increase in δ18O and a gradual decline in δ13Ccarb values. Simultaneously, benthic foraminiferal assemblages show a decrease in diversity and abundance of calcareous taxa and a dominance of infaunal agglutinated taxa. The smaller size of calcareous nannofossils disturbed the vertical export balance of the biological carbon pump towards the sea-bottom, resulting in changes in feeding strategies within the benthic foraminiferal assemblages from deposit feeders to detritus feeders and bacterial scavengers. These micropalaeontological data combined with geochemical proxies suggest that changes in seawater chemistry and/or cooling episodes might have occurred in the latest Triassic, leading to a marked decrease of carbonate production. This in turn culminated in the quasi-absence of calcareous nannofossils and benthic foraminifers in the latest Triassic. The aftermath (latest Triassic earliest Jurassic) was characterised by abundance peaks of “disaster” epifaunal agglutinated foraminifera Trochammina on the sea-floor. Central Atlantic Magmatic Province (CAMP) paroxysmal activity, superimposed on a major worldwide regressive phase, is assumed to be responsible for a deterioration in marine palaeoenvironments. CAMP sulfuric emissions might have been the trigger for cooling episodes and seawater acidification leading to disturbance of the surface carbonate production at the very end-Triassic.

Keywords

Benthic foraminifera Calcareous nannofossils Carbonate production End-Triassic crisis CAMP volcanism Austrian Alps 

Notes

Acknowledgments

We thank François Baudin, Helmut Weissert, Rossana Martini and Emanuela Mattioli for fruitful discussions, Leopold Krystyn and Axel von Hillebrandt for precious field-trip information and Sally Reynolds and Alain Morard for English text assistance. The manuscript has benefited from the constructive reviews of E. Erba and L. Tanner, for which they are gratefully thanked. We also thank Joel Ughetto (MNHN UMR 7209) for isotope data and Gérard Mascarell (FRE 3206 CNRS/MNHN) for MEB photo assistance. This research was supported by the CNRS Program Project “Eclipse II”, and by IFP, Convention no 31231, by the Swiss NSF project 200020-111559 and by the MNHN PPF “Biodiversité et role des microorganismes dans les écosystèmes actuels et passés”. We acknowledge the Région Ile de France, which contributed toward the purchasing of the mass spectrometer of SSMIM (Muséum National d’Histoire Naturelle of Paris, France).

References

  1. Alegret, L., Molina, E., & Thomas, E. (2003). Benthic foraminiferal turnover across the cretaceous/paleogene boundary at Agost (southeastern Spain): Palaeoenvironmental inferences. Marine Micropaleontology, 48, 251–279.Google Scholar
  2. Barker, S., Higgins, J. A., & Elderfield, H. (2003). The future of the carbon cycle: Review, calcification response, ballast and feedback on atmospheric CO2. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 361(1810), 1977–1999.Google Scholar
  3. Behar, F., Beaumont, V., & Penteado, H. L. De B. (2001). Rock-eval 6 technology: Performances and Developments. Oil & Gas Science and Technology—Revue IFP, 56(2), 111–134.Google Scholar
  4. Bellanca, A., Di Stefano, P., & Neri, R. (1995). Sedimentology and isotope geochemistry of Carnian deep-water marl/limestone deposit from the Sicani mountains, Sicily: Environmental implications and evidence for a planktonic source of lime mud. Palaeogeography, Palaeoclimatology, Palaeoecology, 114, 111–129.CrossRefGoogle Scholar
  5. Berner, R. A. (2007). Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 368–373.CrossRefGoogle Scholar
  6. Bonis, N. R., Ruhl, M., & Kürschner, W. M. (2009). Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1–4), 151–159.Google Scholar
  7. Bornemann, A., Aschwer, U., & Mutterlose, J. (2003). The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic-Cretaceous boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 199, 187–228.CrossRefGoogle Scholar
  8. Bown, P. R. (1987). Taxonomy, biostratigraphy, and evolution of late Triassic-early Jurassic calcareous nannofossils. Special Papers in Palaeontology, 38, 1–118.Google Scholar
  9. Bown, P. R., & Young, J. R. (1998). Techniques. In P. R. Bown (Ed.), Calcareous nannofossil biostratigraphy (pp. 16–28). London: British Micropalaeontological Society Series, Chapman and Hall/Kluwer Academic Press.Google Scholar
  10. Bralower, T. J., Bown, P. R., & Siesser, W. G. (1991). Significant of upper Triassic nannofossils from the southern hemisphere (ODP Leg 122, Wombat Plateau, N.W. Australia). Marine Micropaleontology, 17, 119–154.CrossRefGoogle Scholar
  11. Chenet, A. L., Fluteau, F., & Courtillot, V. (2005). Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption. Earth and Planetary Science Letters, 236, 721–731.CrossRefGoogle Scholar
  12. Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H., Buratti, N., Jourdan, F., et al. (2009). Latest Triassic onset of the central atlantic magmatic province (CAMP) volcanism in the fundy basin (Nova Scotia): New stratigraphic constraints. Earth and Planetary Science Letters, 286, 514–525.CrossRefGoogle Scholar
  13. Claps, M., Erba, E., Masetti, D., & Melchiorri, F. (1995). Milankovitch-type cycles recorded in Toarcian black shales from the Belluno trough (Southern Alps Italy). Memorie di Scienze Geologiche, 47, 179–188.Google Scholar
  14. Clémence, M. E., Bartolini, A., Gardin, S., Paris, G., Beaumont, V., Page, K. (2010). Early Hettangian benthic-planktonic coupling at Doniford (SW England). Palaeoenvironmental implications for the aftermath of the end-Triassic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2010.05.021
  15. Cobianchi, M., & Picotti, V. (2001). Sedimentary and biological response to sea-level and palaeoceanographic changes of a lower–middle Jurassic Tethyan platform margin (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 169, 219–244.CrossRefGoogle Scholar
  16. Courtillot, V., & Renne, P. R. (2003). On the ages of flood basalt events. Comptes Rendus Geoscience, 335, 113–140.CrossRefGoogle Scholar
  17. Dale, B. (1983). Dinoflagellate resting cysts, “benthic plankton”. In G. A. Fryxell (Ed.), Survival strategies of the algae (pp. 69–136). Cambridge: Cambridge University Press.Google Scholar
  18. Dale, D. (1986). Life cycle strategies in oceanic dinoflagellates. UNESCO Technical Paper: Marine Sciences, 49, 65–72.Google Scholar
  19. Di Nocera, S., & Scandone, P. (1977). Triassic nannoplankton limestones of deep basin origin in the central Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 21, 101–111.CrossRefGoogle Scholar
  20. Erba, E. (2004). Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52, 85–106.CrossRefGoogle Scholar
  21. Erba, E. (2006). The first 150 million years history of calcareous nannoplankton: Biosphere–geosphere interactions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 237–250.CrossRefGoogle Scholar
  22. Espitalié, J., Deroo, G., & Marquis, F. (1985a). La pyrolyse rock-eval et ses applications. Oil & Gas Science and Technology, 40(5), 563–579.CrossRefGoogle Scholar
  23. Espitalié, J., Deroo, G., & Marquis, F. (1985b). La pyrolyse rock-eval et ses applications. Oil & Gas Science and Technology, 40(6), 755–783.CrossRefGoogle Scholar
  24. Espitalié, J., Deroo, G., & Marquis, F. (1985c). La pyrolyse rock-eval et ses applications. Oil & Gas Science and Technology, 41(1), 73–89.CrossRefGoogle Scholar
  25. Galli, M. T., Jadoul, F., Bernasconi, S. N., & Weissert, H. (2005). Anomalies in global carbon cycling and extinction at the Triassic-Jurassic boundary: Evidence from a marine C-isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 216, 203–214.CrossRefGoogle Scholar
  26. Golebiowski, R. (1990). Facial and faunistic changes from Triassic to Jurassic in the northern Calcareous Alps. Cahiers de l’Université de Lyon, 3, 175–184. (Série Scientifique).Google Scholar
  27. Gooday, A. J. (2003). Benthic foraminifera (protista) as tools in deep-water palaeoceanography: Environmental influences on faunal characteristics. Advances in Marine Biology, 46, 1–90.CrossRefGoogle Scholar
  28. Gottschling, M., Renner, S. S., Meier, K. J., Willems, H., & Keupp, H. (2008). Timing deep divergence events in calcareous dinoflagellates. Journal of Phycology, 44, 429–438.CrossRefGoogle Scholar
  29. Götz, A. E., Ruckwied, K., Pálfy, J., & Haas, J. (2009). Palynological evidence of synchronous changes within the terrestrial and marine realm at the Triassic-Jurassic boundary (Csovár section, Hungary). Review of Palaeobotany and Palynology, 156(3–4), 401–409.CrossRefGoogle Scholar
  30. Gräfe, K. U. (2005). Benthic foraminifers and palaeoenvironment in the lower and middle Jurassic of the western Basque-Cantabrian basin (Nothern Spain). Journal of Iberian Geology, 31, 217–233.Google Scholar
  31. Guex, J., Bartolini, A., Atudorei, V., & Taylor, D. (2004). High resolution ammonite and carbon-isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). Earth and Planetary Science Letters, 225, 29–41.CrossRefGoogle Scholar
  32. Hallam, A. (2002). How catastrophic was the end-Triassic mass extinction? Lethaia, 35, 147–157.CrossRefGoogle Scholar
  33. Hallam, A., & Wignall, P. B. (1997). Mass extinctions and their aftermath (p. 320). Oxford: Oxford University Press.Google Scholar
  34. Hautmann, M. (2004). Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies, 50, 257–261.CrossRefGoogle Scholar
  35. Hautmann, M. (2008). Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrbuch fur Geologie und Paläontologie Abhandlungen, 249, 119–127.CrossRefGoogle Scholar
  36. Hemleben, C., Kaminski, M. A., Kuhnt, W., & Scott, D. B. (1990). Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera (1017 pp.), vol. 327. Kluwer Academic Publishers, Dordrecht, The Netherland.Google Scholar
  37. Hesselbo, S. P., Robinson, S. A., Surlyk, F., & Piasecki, S. (2002). Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology, 30, 251–254.CrossRefGoogle Scholar
  38. Hillebrandt, A. V., & Krystyn, L. (2009). On the oldest Jurassic ammonites of Europe (Northern Calcareous Alps, Austria) and their global significance. Neues Jahrbuch fur Geologie und Paläontologie Abhandlungen, 253(2–3), 163–195.CrossRefGoogle Scholar
  39. Hillebrandt, A. V., Krystyn, L., Kuerschner, W. M., et al. (2007). A candidate GSSP for the base of the Jurassic in the northern Calcareous Alps (Kuhjoch section; Karwendel Mountains, Tyrol, Austria). ISJS Newsletter, 34(1), 2–20.Google Scholar
  40. Hillebrandt, A. V., & Urlichs, M. (2008). Foraminifera and ostracoda from the northern Calcareous Alps and the end-Triassic biotic crisis. Berichte der Geologischen Bundesanstalt, 76, Wien, pp. 30–37, 2 Abb., 2008–2009.Google Scholar
  41. Hubbard, R. N., & Boulter, M. C. (2000). Phytogeography and paleoecology in western Europe and eastern Greenland near the Triassic-Jurassic boundary. Palaios, 15, 120–131.Google Scholar
  42. Janofske, D. (1987). Kalkige Nannofossilien aus der Ober-Trias (Rhät) der Nördlichen Kalkalpen. Berliner Geowissenschaftliche Abhandlungen, A, 86, 45–67.Google Scholar
  43. Janofske, D. (1992). Calcareous nannofossils of the Alpine upper Triassic. In: B. Hamrsmid & J. Young (Eds.), Nannoplankton research (pp. 87–109). Proceedings of the 4th INA conference, Prague 1991, Knihovnicka ZPN 14a, 1.Google Scholar
  44. Jenkins, D. G., & Murray, J. W. (1989). Stratigraphical atlas of fossil foraminifera (2nd ed., p. 593). Ellis Horwood Limited: The British Micropaleontological Society.Google Scholar
  45. Jones, R. W., & Charnock, M. A. (1985). ‘Morphogroups’ of agglutinated foraminifera: Their life positions and feeding habits and potential applicability in (palaeo) ecological studies. Revue de Paléobiologie, 4, 311–320.Google Scholar
  46. Jorissen, F. J., De Stigter, H. C., & Widmark, J. G. (1995). A conceptual model explaining benthic foraminiferal microhabitat. Marine Micropaleontology, 26, 3–15.CrossRefGoogle Scholar
  47. Kaminski, M. A., Kuhnt, W., & Moullade, M. (1999). The evolution and paleobiogeography of abyssal agglutinated foraminifera since the early Cretaceous: A tale of four faunas. Neues Jahrbuch fur Geologie und Paläontologie Abhandlungen, 212, 401–439.Google Scholar
  48. Keupp, H. (1995). Die kalkigen Dinoflagellaten—Zysten aus dem Ober-Alb der Bohrung Kirchrode 1/91 (zentrales Niedersächsisches Becken, NW-Deutschland. Berliner Geowissenschaftliche Abhandlungen Reihe, E, 16(1), 155–199.Google Scholar
  49. Keupp, H. (2001). Palaeoenvironmental interpretation of Late Albian calcareous dinoflagellate cysts from the Kirchrode I borehole (Lower Saxony Basin, NW-Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 174, 251–267.CrossRefGoogle Scholar
  50. Keupp, H., & Kowalski, F.-U. (1992). Die kalkigen Dinoflagellaten-Zysten aus dem Alb von Folkestone/SE-England. Berliner Geowissenschaftliche Abhandlungen Reihe, E, 3, 211–251.Google Scholar
  51. Keupp, H., & Mutterlose, J. (1994). Calcareous phytoplankton from the Barremian/Aptian boundary interval from NW Germany. Cretaceous Research, 15, 739–763.CrossRefGoogle Scholar
  52. Kohring, R., Gottschling, M., & Keupp, H. (2005). Examples for character traits and palaeoecological significance of calcareous dinoflagellates. Paläontologische Zeitschrift, 79(1), 79–91.Google Scholar
  53. Krystyn, L., Böhm, F., Kuerschner, W. M., & Delecat, S. (2005). The TriassicJurassic boundary in the northern Calcareous Alps. In: J. Pálfy & P. Ozsvárt (Eds.), Program, abstracts and field guide. 5th field workshop of IGCP 458 project, Tata and Hallein, September 2005, pp. A1–A37.Google Scholar
  54. Kuerschner, W. M., Bonis, N. R., & Krystyn, L. (2007). Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section—Nothern Calcareous Alps (Austria). Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 257–280.CrossRefGoogle Scholar
  55. Kuhnt, W., Moullade, M., & Kaminski, M. A. (1996). Ecological structuring and evolution of deep sea agglutinated foraminifera—a review. Revue de Micropaleontologie, 39, 271–281.CrossRefGoogle Scholar
  56. Kuss, J. (1983). Faziesentwicklung in proximalen intraplatform-Becken: Sedimentation, Palökologie und Geochemie der Kössener Schichten. Facies, 9, 61–72.CrossRefGoogle Scholar
  57. Linzer, H. G., Ratschbacher, L., & Frisch, W. (1995). Tranpressional collison structures in the upper crust: The foldthrust belt of the Northern Calcareous Alps. Tectonophysics, 242, 41–61.CrossRefGoogle Scholar
  58. Loeblich, A. R. & Tappan, H. (1987). Foraminiferal general and their classification (pp. 970). Van Nostrand Reinhold compagny Inc., 1 and 2, New York.Google Scholar
  59. Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B., & Guex, J. (2009). Late Pliensbachian—early toarcian (Early Jurassic) environmental changes in an epicontinental basin of NW Europe (Causses area, central France). A micropaleontological and geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 273(3–4), 346–364.CrossRefGoogle Scholar
  60. Marshall, J. D. (1992). Climatic and oceanographic signals from the carbonate rock record and their preservation. Geological Magazine, 129, 143–160.CrossRefGoogle Scholar
  61. Martini, R., Zaninetti, L., Villeuneuve, M., Cornee, J. J., Krystyn, L., Cirilli, S., et al. (2000). Triassic pelagic deposits of Timor: Palaeogeographic and sea-level implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 160, 123–151.CrossRefGoogle Scholar
  62. Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Vérati, C., et al. (2004). Synchrony of the central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology, 32, 973–976.CrossRefGoogle Scholar
  63. Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., & DeMin, A. (1999). Extensive 200-million-year-old continental flood basalts of the central Atlantic magmatic province. Science, 284, 616–618.CrossRefGoogle Scholar
  64. Mattioli, E. (1997). Nannoplankton productivity and diagenesis in the rhythmically bedded Toarcian-Aalenian Fiuminata sequence (Umbria-Marche Apennine, Central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 113–134.CrossRefGoogle Scholar
  65. Mattioli, E., & Pittet, B. (2004). Spatial and temporal distribution of calcareous nannofossils along proximal—distal transect in the Lower Jurassic of the Umbria–Marche Basin (central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 205, 295–316.CrossRefGoogle Scholar
  66. McElwain, J. C., Beerling, D. J., & Woodward, F. I. (1999). Fossil plants and global warming at the Triassic–Jurassic boundary. Science, 285, 1386–1390.CrossRefGoogle Scholar
  67. McGann, M., & Sloan, D. (1999). Benthic foraminifers in the regional monitoring program’s San Francisco estuary samples: Richmond, San Francisco Estuary Institute. San Francisco Estuary Regional Monitoring Program for trace substances, 1997, Annual Report, pp. 249–258.Google Scholar
  68. McHone, J. G. (2002). Volatile emissions of central Atlantic Magmatic province basalts: Mass assumptions and environmental consequences. In: W. E. Hames & J. G. McHone, P. R. Renne, C. Ruppel (Eds.), The Central Atlantic Magmatic Province: American Geophysical Union, Geophysical Monograph 136, 241–254.Google Scholar
  69. McRoberts, C. A., Furrer, H., & Jones, D. S. (1997). Palaeoenvironmental interpretation of a Triassic–Jurassic boundary section from Western Austria based on palaeoecological and geochemical data. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 79–95.CrossRefGoogle Scholar
  70. Nagy, J. (1992). Environmental significance of foraminiferal morphogroups in Jurassic North Sea deltas. Palaeogeography, Palaeoclimatology, Palaeoecology, 95, 111–134.CrossRefGoogle Scholar
  71. Newell, N. D. (1963). Crises in the history of life. Sciences of America, 208, 76–92.Google Scholar
  72. Noël, D., Busson, G., Cornée, A., Bodeur, Y., & Mangin, A.-M. (1994). Contribution fondamentale des coccolithophoridées à la constitution des calcaires fins pélagiques du Jurassique moyen et supérieur. Geobios, 17, 701–721.CrossRefGoogle Scholar
  73. Pálfy, J., Demeny, A., Haas, J., Htenyi, M., Orchard, M. J., & Veto, I. (2001). Carbon isotope anomaly at the Triassic–Jurassic boundary from a marine section in Hungary. Geology, 29, 1047–1050.CrossRefGoogle Scholar
  74. Raup, D. M., & Sepkoski, J. J., Jr. (1984). Periodicity of extinctions in the geological past. Proceeding of the National Academy of Sciences of the United States of America, 81, 801–805.CrossRefGoogle Scholar
  75. Reolid, M., Rodriguez-Tovar, F. J., Nagy, J., & Olóriz, F. (2008). Benthic foraminiferal morphogroup of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, southern Spain): Characterization of biofacies and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 280–299.CrossRefGoogle Scholar
  76. Ridgwell, A. (2005). A mid Mesozoic revolution in the regulation of ocean chemistry. Marine Geology, 217, 339–357.CrossRefGoogle Scholar
  77. Rost, B., & Riebesell, U. (2004). Coccolithophores and the biological pump: Responses to environmental changes. In: H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 99–125). Berlin: Springer.Google Scholar
  78. Ruhl, M., Kürschner, W. M., & Krystyn, L. (2009). Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth and Planetary Science Letters, 281(3–4), 169–187.CrossRefGoogle Scholar
  79. Schaltegger, U., Guex, J., Bartolini, A., Schoene, B., & Ovtcharova, M. (2008). Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth and Planetary Science Letters, 267, 266–275.CrossRefGoogle Scholar
  80. Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., & Blackburn, T. J. (2010). Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100, 000-year level. Geology, 38, 387–390.CrossRefGoogle Scholar
  81. Scott, D., Gradstein, F., Schafer, C. T., Miller, A., & Williamson, M. (1983). The recent as a key to the past: Does it apply to agglutinated foraminiferal assemblages? In: J. G. Verdenius, et al. (Eds.), Proceedings of the first workshop on arenaceous foraminifera (pp. 147–157). 7-9 September 1981. Institute for Kontinentalsokkelundersokelser, Publ. 108.Google Scholar
  82. Self, S., Thordarsen, T., Widoowson, M., & Jay, A. (2006). Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 27, 518–532.Google Scholar
  83. Stanley, G. D., Jr. (2003). The evolution of modern corals and their early history. Earth-Science Reviews, 60, 195–225.CrossRefGoogle Scholar
  84. Stanley, G. D., Jr. (2006). Influence of seawater chemistry on biomineralization throughout phanerozoic time: Paleontological and experimental evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 214–236.CrossRefGoogle Scholar
  85. Tanner, L. H., Hubert, J. F., Coffey, B. P., & Mcinerney, D. P. (2001). Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature, 411, 675–677.CrossRefGoogle Scholar
  86. Tanner, L. H., Lucas, S. G., & Chapman, M. G. (2004). Assessing the record and causes of late Triassic extinctions. Earth-Science Reviews, 65, 103–139.CrossRefGoogle Scholar
  87. Tanner, L. H., Smith, D. L., & Allan, A. (2007). Stomal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano. Geophysical Research Letters, 34, L15807. doi: 10.1029/2007GL030320.CrossRefGoogle Scholar
  88. Textor, C., Graf, H. F., Timmreck, C., & Robock, A. (2004). Emissions of volcanoes. In C. Granier, P. Artaxo, & C. E. Reeves (Eds.), Emissions of atmospheric trace compounds, series: Advances in global change research, vol. 18, chapter 7 (pp. 269–304). Netherlands: Dordrecht.Google Scholar
  89. Tremolada, F., Van de Schootbrugge, B., & Erba, E. (2005). Early Jurassic schizosphaerellid crisis in Cantabria, Spain: Implications for calcification rates and phytoplankton evolution across the Toarcian oceanic anoxic event, Paleoceanography 20. doi: 10.1029/2004PA001120.
  90. Tyszka, J. (1994). Response of middle Jurassic benthic foraminiferal morphogroups to dysoxic/anoxic conditions in the Pieniny Klippen basin, polish carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 55–81.CrossRefGoogle Scholar
  91. van de Schootbrugge, B., Quan, T. M., Lindström, S., Püttmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Röhling, H. -G., Richoz, S., Rosenthal, Y., & Falkowski, P. G. (2009). Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, ADVANCEONLINEPUBLICATION|. http://www.nature.com/naturegeoscience. doi: 10.1038/NGEO577.
  92. van de Schootbrugge, B., Tremolada, F., Rosenthal, Y., Bailey, T. R., Feist-Burkhad, S., Brinkhuis, H., et al. (2007). End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 126–141.CrossRefGoogle Scholar
  93. Villain, J. M. (1981). Les Calcisphaerulidae: Intérêt stratigraphique et paléoécologique. Cretaceous Research, 2, 435–438.CrossRefGoogle Scholar
  94. Wall, D., & Dale, B. (1968). Quaternary calcareous dinoflagellates (Calciodinelloideae) and their natural affinities. Journal of Paleontology, 42, 1395–1408.Google Scholar
  95. Ward, P. D., Haggart, J. W., Carter, E. S., Wilbur, D., Tipper, H. W., & Evans, T. (2001). Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science, 292, 1148–1151.CrossRefGoogle Scholar
  96. Zeebe, R. E., & Westbroek, P. (2003). A simple model for the CaCO3 saturation state of the ocean: The “Strangelove”, the “Neritan”, and the “Cretan” ocean. Geochemistry, Geophysics, Geosystems, 4(12), 1104. doi: 10.1029/2003GC000538.
  97. Zügel, P. (1994). Verbreitung kalkiger Dinoflagellaten-Zysten im Cenoman/Turon von Westfrankreich und Norddeutschland. Courrier Forschungs-Institut Senckenberg, 176, 119 pp.Google Scholar

Copyright information

© Swiss Geological Society 2010

Authors and Affiliations

  • Marie-Emilie Clémence
    • 1
  • Silvia Gardin
    • 1
    Email author
  • Annachiara Bartolini
    • 2
  • Guillaume Paris
    • 3
  • Valérie Beaumont
    • 3
  • Jean Guex
    • 4
  1. 1.Université de Paris VI, CR2P “Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements” CNRS UMR 7207Paris Cedex 05France
  2. 2.Muséum National d’Histoire Naturelle, CR2P “Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements” CNRS UMR 7207Paris Cedex 05France
  3. 3.Département de Géologie et GéochimieIFPRueil Malmaison CedexFrance
  4. 4.IGP, Quartier UNIL-DorignyLausanneSwitzerland

Personalised recommendations