Skip to main content
Log in

Periodic-parabolic eigenvalue problems with indefinite weight functions

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We improve a result on the existence and uniqueness of a positive principal eigenvalue of a periodic parabolic equation with respect to an indefinite weight function due to Beltramo and Hess. We remove the regularity conditions on the domain and weaken considerably the regularity assumptions on the weight and the coefficients of the parabolic operator. Further we give a perturbation theorem for the principal eigenvalue which allows to perturb the domain, the coefficients of the parabolic operator and the weight simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Aronson, Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa 22, 607–694 (1968).

    MATH  MathSciNet  Google Scholar 

  2. R. Courant and D. Hilbert, Methods of Mathematical Physics I, New York 1962.

  3. I. Babuska and R. Vyborny, Continuous dependence of eigenvalues on the domain. Czechoslovak Math. J. 15, 169–178 (1965).

    MathSciNet  Google Scholar 

  4. A. Beltramo, Über den Haupteigenwert von periodisch-parabolischen Differentialoperatoren. Ph.D. Thesis, University of Zürich, 1984.

  5. A. Beltramo and P. Hess, On the principal eigenvalue of a periodic-parabolic operator. Comm. Partial Differential Equations 9, 919–941 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  6. E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations. J. Differential Equations 74, 120–156 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations II. J. Differential Equations 87, 316–339 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  8. E. N. Dancer, Some remarks on classical problems and fine properties of Sobolev spaces. Differential Integral Equations 9, 437–446 (1996).

    MATH  MathSciNet  Google Scholar 

  9. D. Daners, Domain perturbation for linear and nonlinear parabolic equations. J. Differential Equations 129, 358–402 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Hess, On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions. Math. Ann. 270, 467–475 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Hess, Periodic-parabolic Boundary Value Problems and Positivity. Pitman Res. Notes Math. Ser. 247, Harlow, Essex, 1991.

    MATH  Google Scholar 

  12. E. Hewitt and K. R. Stromberg, Real and Abstract Analysis. Berlin 1965.

  13. T. Kato, Perturbation Theory for Linear Operators. Berlin 1966.

  14. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris 1969.

  15. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Berlin 1972.

  16. J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems. J. Differential Equations 127, 263–294 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  17. H. H. Schaefer, Banach Lattices and Positive Operators. Berlin 1974.

  18. N. S. Trudinger, Pointwise estimates and quasilinear parabolic equations. Comm. Pure Appl. Math. 21, 205–226 (1968).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant of the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daners, D. Periodic-parabolic eigenvalue problems with indefinite weight functions. Arch. Math. 68, 388–397 (1997). https://doi.org/10.1007/s000130050071

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s000130050071

Mathematics Subject Classification (1991)

Navigation