Skip to main content
Log in

Dissipative periodic systems and symmetric interpolation in Schur classes

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Matrix-valued functions analytic and contractive in the open unit disk (Schur functions) play an important role in system theory. They represent transfer functions of causal time-invariant dissipative systems. In this paper we show how a Schur function can still be associated to a k-periodic system. This function satisfies a certain symmetry condition (conditions (1.7) for k=2 and (4.4) for general k). We study a general bitangential interpolation problem for the Schur functions satisfying this symmetry condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Alpay, V. Bolotnikov and P. Loubaton, An interpolation problem with symmetry and related questions. Z. Anal. Anwendungen 15, 19–29 (1996).

    MATH  MathSciNet  Google Scholar 

  2. D. Alpay, V. Bolotnikov and P. Loubaton, On two sided residue interpolation for H 2 functions with symmetries. J. Math. Anal. Appl. 200, 76–105 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Ball, I. Gohberg and L. Rodman, Interpolation of rational matrix functions. Basel 1990.

  4. J. Ball, I. Gohberg and L. Rodman, Tangential interpolation problems for rational matrix functions. In: Proc. Sympos. Pure Math. 40, 59–86. Providence, RI, 1990.

    MathSciNet  Google Scholar 

  5. J. Ball, I. Gohberg and L. Rodman, Two-sided Lagrange-Sylvester interpolation problems for rational matrix functions. In: Proc. Sympos. Pure Math. 51, 17–83. Providence, RI, 1990.

    MathSciNet  Google Scholar 

  6. J. Ball, I. Gohberg and L. Rodman, Two sided tangential interpolation of real rational matrix functions. In: Operator theory: Advances and Applications, 73–102. Basel 1993.

  7. J. Ball and J. Kim. Bitangential interpolation problems for symmetric rational matrix functions. Linear Algebra Appl. 241–243, 133–152 (1996).

    MathSciNet  Google Scholar 

  8. S. Bittanti, Determinisitic and stochastic linear periodic systems. In: Time series and linear systems, S. Bittanti, ed., 141–182. Berlin 1986.

  9. S. Bittanti and P. Bolzern, Discrete-time linear periodic systems: grammian and modal criteria for reachability and controllability. Internat. J. Control 41, 899–928 (1985).

    Article  MathSciNet  Google Scholar 

  10. S. Bittanti and P. Bolzern, On the structure theory of discrete-time linear systems. Internat. J. Systems Sci. 17, 33–47 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Bognar, Indefinite inner product spaces. Berlin-Heidelberg-New York 1974.

  12. N. Dunford and J. Schwartz, Linear operators I. New York 1957.

  13. H. Dym, J contractive matrix functions, reproducing kernel spaces and interpolation. CBMS Lecture Notes 71, Amer. Math. Soc., Rhodes Island, 1989.

    Google Scholar 

  14. P. A. Fuhrmann, Linear systems and operators in Hubert space. New York 1981.

  15. E. G. Gladysěv, Periodically correlated random sequences. Soviet Math. 12, 382–385 (1961).

    Google Scholar 

  16. I. Gohberg, M. Kaashoek and L. Lerer, Minimality and realization of discrete time-varying systems. In: Operator theory: Advances and Applications 56, 261–296. Basel 1992.

    MathSciNet  Google Scholar 

  17. I. S. Iohvidov, M.G. Krein, and H. Langer, Introduction to the spectral theory of operators in spaces with an indefinite metric. Berlin 1982.

  18. A. Nudelman, On a generalization of classical interpolation problems. Sov. Math. Dokl. 23, 125–128 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpay, D., Bolotnikov, V. & Loubaton, P. Dissipative periodic systems and symmetric interpolation in Schur classes. Arch. Math. 68, 371–387 (1997). https://doi.org/10.1007/s000130050070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s000130050070

Mathematics Subject Classification (1991)

Navigation