Skip to main content
Log in

Multipolar Hardy inequalities in \(L^{p}\)-spaces

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The aim of this paper is twofold. On the one hand, we establish with two different methods the new multipolar Hardy inequality

$$\begin{aligned}&\frac{(N-2)^{2}}{np^{2}}\mathop \int \limits _{{\mathbb {R}}^{N}}\sum _{i=1}^{n}\frac{|u|^{p}}{|x-a_{i}|^{2}}dx\\&\qquad +\frac{(N-2)^{2}}{2p^{2}n^{2}}\mathop \int \limits _{{\mathbb {R}}^{N}}\sum _{\begin{array}{c} i,j=1\\ i\ne j \end{array}}^{n}\frac{|a_{i}- a_{j}|^{2}}{|x-a_{i}|^{2}|x-a_{j}|^{2}}|u|^{p}dx\\&\quad \le \mathop \int \limits _{{\mathbb {R}}^{N}}|\nabla u|^{2}|u|^{p-2}dx \end{aligned}$$

for every \(u \in H^{1,p}({\mathbb {R}}^{N})\), \(p\ge 2\), \(a_{1}, a_{2},\ldots , a_{n} \in {\mathbb {R}}^{N}\), \(N\ge 3\), and \(n\ge 2\). On the other hand, we prove the weighted multipolar Hardy inequality

$$\begin{aligned}&\frac{(N+k_{2}-2)^{2}}{np^{2}}\mathop \int \limits _{{\mathbb {R}}^{N}} \sum _{i=1}^{n}\frac{|u|^{p}}{|x-a_{i}|^{2}}d\mu \\&\qquad +\frac{(N+k_{2}-2)^{2}}{2n^{2}p^{2}}\mathop \int \limits _{{\mathbb {R}}^{N}}\sum _{\begin{array}{c} i,j=1\\ i\ne j \end{array}}^{n}\frac{|a_{i}- a_{j}|^{2}}{|x-a_{i}|^{2}|x-a_{j}|^{2}}|u|^{p}d\mu \nonumber \\&\quad \le \mathop \int \limits _{{\mathbb {R}}^{N}}|\nabla u|^{2}|u|^{p-2}d\mu +k_{1}\mathop \int \limits _{{\mathbb {R}}^{N}}|u|^{p}d\mu \end{aligned}$$

for every \(u \in H^{1,p}({\mathbb {R}}^{N},d\mu )\), \(d\mu =\mu (x)dx\), \(p\ge 2\), \(a_{1}, a_{2},\ldots , a_{n} \in {\mathbb {R}}^{N}\), \(N\ge 3\), \(n\ge 1\), and some constants \(k_{1}, k_{2} \in {\mathbb {R}}\), \(k_{2}>2-N\). The weighted functions \(\mu \) are of a quite general type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, S. K.: Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh Sect. A. 132, 1021–1043 (2002)

  2. Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved \(L^{p}\)-Hardy inequalities with best constants. Trans. Amer. Math. Soc. 356, 2169–2196 (2004)

  3. Bosi, R., Dolbeault, J.: Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Commun. Pure Appl. Anal. 7, 533–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compositio Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Canale, A., Pappalardo, F.: Weighted Hardy inequalities and Ornstein–Uhlenbeck type operators perturbed by multipolar inverse square potentials. J. Math. Anal. Appl. 463, 895–909 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canale, A., Pappalardo, F., Tarantino, C.: Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Commun. Pure Appl. Anal. 20, 405–425 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Catto, I., Le Bris, C., Lions, P.L.: On the thermodynamic limit for Hartree–Fock type models. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 687–760 (2001)

  8. Cazacu, C., Zuazua, E.: Improved multipolar Hardy inequalities. In: Cicognani, M., Colombini, F., Del Santo, D. (eds.) Studies in Phase Space Analysis with Applications to PDEs, pp. 35–52. Progr. Nonlinear Differential Equations Appl., 84. Birkhäuser/Springer, New York (2013)

  9. García Azorero, J.P., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differential Equations 144, 441–476 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolbeault, J., Duoandikoetxea, J., Esteban, M.J., Vega, L.: Hardy-type estimates for Dirac operators. Ann. Sci. École Norm. Sup. 40, 885–900 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duyckaerts, T.: A singular critical potential for the Schrödinger operator. Canad. Math. Bull. 50, 35–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Felli, V., Marchini, E.M., Terracini, S.: On Schrödinger operators with multipolar inverse-square potentials. J. Funct. Anal. 250, 265–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Commun. Partial Differential Equations 31, 469–495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felli, V., Terracini, S.: Nonlinear Schrödinger equations with symmetric multipolar potentials. Calc. Var. Partial Differential Equations 27, 256–58 (2006)

    Article  MATH  Google Scholar 

  15. Filippas, S., Maz\(^{\prime }\)ya, V., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. Part. Differential Equations 25, 491–501 (2006)

  16. Krejc̆ir̆ík, D., Zuazua, E.: The Hardy inequality and the heat equation in twisted tubes. J. Math. Pures Appl. 94, 277–303 (2010)

  17. Metoui, I.: Generalized Ornstein–Uhlenbeck operators perturbed by multipolar inverse square potentials in \(L^{2}\)-spaces. Arch. Math. (Basel) 117, 433–440 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Morgan, J.D.: Schrödinger operators whose operators have separated singularities. J. Oper. Theory. 1, 109–115 (1979)

    MATH  Google Scholar 

  19. Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.). 38, 295–308 (1983)

  20. Tölle, J.M.: Uniqueness of weighted Sobolev spaces with weakly differentiable weights. J. Funct. Anal. 263, 3195–3223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vázquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere gratitude to the referees for their valuable corrections, comments, and suggestions which improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Metoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metoui, I. Multipolar Hardy inequalities in \(L^{p}\)-spaces. Arch. Math. 119, 601–611 (2022). https://doi.org/10.1007/s00013-022-01787-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-022-01787-1

Keywords

Mathematics Subject Classification

Navigation