Skip to main content
Log in

Weighted endpoint fractional Leibniz rule

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We prove that the weighted endpoint fractional Leibniz rules

$$\begin{aligned} \Vert D^s (fg)\Vert _{L^{p}_{w}({{\mathbb {R}}^{n}})}\lesssim & {} \Vert D^s f\Vert _{L^{1}_{w_1}({{\mathbb {R}}^{n}})} \Vert g\Vert _{L^{p_2}_{w_2}({{\mathbb {R}}^{n}})} + \Vert f\Vert _{L^{1}_{w_1}({{\mathbb {R}}^{n}})}\Vert D^s g\Vert _{L^{p_2}_{w_2}({{\mathbb {R}}^{n}})}, \\ \Vert J^s (fg)\Vert _{L^{p}_{w}({{\mathbb {R}}^{n}})}\lesssim & {} \Vert J^s f\Vert _{L^{1}_{w_1}({{\mathbb {R}}^{n}})} \Vert g\Vert _{L^{p_2}_{w_2}({{\mathbb {R}}^{n}})} + \Vert f\Vert _{L^{1}_{w_1}({{\mathbb {R}}^{n}})}\Vert J^s g\Vert _{L^{p_2}_{w_2}({{\mathbb {R}}^{n}})} \end{aligned}$$

hold for \(1\le p_2< \infty , 1/2\le p<\infty \) with \(1/p=1+1/p_2\) and \(s>\max \left\{ n(\frac{\tau (w)}{p}-1),0\right\} \) or \(s\in 2{\mathbb {N}},\) provided that \(w_1\in A_{1}({{\mathbb {R}}^{n}})\) and \(w_2\in A_{p_2}({{\mathbb {R}}^{n}})\). Our result complements and extends some existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benea, C., Muscalu, C.: Multiple vector valued inequalities via the helicoidal method. Anal. PDE 9(8), 1931–1988 (2016)

    Article  MathSciNet  Google Scholar 

  2. Benea, C., Muscalu, C.: Quasi-Banach valued inequalities via the helicoidal method. J. Funct. Anal. 273, 1295–1353 (2017)

    Article  MathSciNet  Google Scholar 

  3. Benea, C., Zhai, Y.: Multi-parameter flag Leibniz rules of arbitrary complexity in mixed-norm spaces. arXiv:2107.01426 (2021)

  4. Bényi, Á., Oh, T.: Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators. J. Fourier Anal. Appl. 20, 282–300 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J., Li, D.: On an endpoint Kato–Ponce inequality. Differential Integral Equations 27, 1037–1072 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bernicot, F., Maldonado, D., Moen, K., Naibo, V.: Bilinear Sobolev–Poincaré inequalities and Leibniz-type rules. J. Geom. Anal. 24, 1144–1180 (2014)

    Article  MathSciNet  Google Scholar 

  7. Christ, M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  8. Di Plinio, F., Ou, Y.: Banach-valued multilinear singular integrals. Indiana Univ. Math. J. 67(5), 1711–1763 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fujiwara, K., Georgiev, V., Ozawa, T.: Higher order fractional Leibniz rule. J. Fourier Anal. Appl. 24, 650–665 (2018)

    Article  MathSciNet  Google Scholar 

  10. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

  11. Grafakos, L.: Multilinear Operators in Harmonic Analysis and Partial Differential Equations. Research Institute of Mathematical Sciences (Kyoto), Kyoto (2012)

    MATH  Google Scholar 

  12. Grafakos, L., Maldonado, D., Naibo, V.: A remark on an end-point Kato–Ponce inequality. Differential Integral Equations 27, 415–424 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Grafakos, L., Oh, S.: The Kato–Ponce inequality. Comm. Partial Differential Equations 39, 1128–1157 (2014)

    Article  MathSciNet  Google Scholar 

  14. Grafakos, L., Torres, R.H.: Multilinear Calderón–Zygmund theory. Adv. Math. 165, 124–164 (2002)

    Article  MathSciNet  Google Scholar 

  15. Gulisashvili, A., Kon, M.: Exact smoothing properties of Schrödinger semigroups. Am. J. Math. 118, 1215–1248 (1996)

    Article  Google Scholar 

  16. Hart, J., Torres, R.H., Wu, X.: Smoothing properties of bilinear operators and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces. Trans. Amer. Math. Soc. 370(12), 8581–8612 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  18. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de-Vries equation via the contraction principle. Comm. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  Google Scholar 

  19. Li, D.: On Kato–Ponce and fractional Leibniz. Rev. Mat. Iberoam. 35(1), 23–100 (2019)

    Article  MathSciNet  Google Scholar 

  20. Muscalu, C.: Flag Paraproducts. Harmonic Analysis and Partial Differential Equations. Contemporary Mathematics, vol. 505. American Mathematical Society, Providence (2010)

  21. Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Bi-parameter paraproducts. Acta Math. 193, 269–296 (2004)

    Article  MathSciNet  Google Scholar 

  22. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 138. Cambridge University Press, Cambridge (2013)

  23. Naibo, V., Thomson, A.: Coifman–Meyer multipliers: Leibniz-type rules and applications to scattering of solutions to PDEs. Trans. Amer. Math. Soc. 372, 5453–5481 (2019)

    Article  MathSciNet  Google Scholar 

  24. Oh, S., Wu, X.: On the \(L^1\) endpoint Kato–Ponce inequality. Math. Res. Lett. 27(4), 1129–1163 (2020)

    Article  MathSciNet  Google Scholar 

  25. Oh, S., Wu, H.: The Kato-Ponce inequality with polynomial weights. arXiv:2108.10412 (2021)

  26. Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106. American Mathematical Society, Providence (2006)

  27. Torres, R.H., Ward, E.L.: Leibniz’s rule, sampling and wavelets on mixed Lebesgue spaces. J. Fourier Anal. Appl. 21, 1053–1076 (2015)

Download references

Acknowledgements

The author would like to express his sincere appreciation to the referee for his/her valuable corrections, comments, and suggestions which improved the original manuscript. The author also wants to thank Seungly Oh for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by NNSF of China (Nos. 12071473, 11671397).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X. Weighted endpoint fractional Leibniz rule. Arch. Math. 118, 399–412 (2022). https://doi.org/10.1007/s00013-022-01711-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-022-01711-7

Keywords

Mathematics Subject Classification

Navigation