Abstract
We prove explicit \(L^p\) bounds for second order Riesz transforms of the sub-Laplacian and of the Laplacian in the Lie groups \({\mathbb {H}}\), \(\mathbb {SU}(2)\), and \(\widetilde{\mathbb {SL}}(2)\). Our proof makes use of martingale transform techniques and specific commutation properties between the complex gradient and the sub-Laplacian in those Lie groups.
This is a preview of subscription content, access via your institution.
References
Arcozzi, N., Domelevo, K., Petermichl, S.: Second order Riesz transforms on multiply-connected Lie groups and processes with jumps. Potential Anal. 45(4), 777–794 (2016)
Bañuelos, R.: The foundational inequalities of D.L. Burkholder and some of their ramifications. Illinois J. Math. 54(3), 789–868 (2012), 2010
Bañuelos, R., Baudoin, F.: Martingale transforms and their projection operators on manifolds. Potential Anal. 38(4), 1071–1089 (2013)
Bañuelos, R., Baudoin, F., Chen, L.: Gundy–Varopoulos martingale transforms and their projection operators on manifolds and vector bundles. Math. Ann. 378(1–2), 359–388 (2020)
Bañuelos, R., Lindeman, A., II.: A martingale study of the Beurling–Ahlfors transform in \({ R}^n\). J. Funct. Anal. 145(1), 224–265 (1997)
Bañuelos, R., Méndez-Hernández, P.J.: Space–time Brownian motion and the Beurling–Ahlfors transform. Indiana Univ. Math. J. 52(4), 981–990 (2003)
Bañuelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms. Duke Math. J. 80(3), 575–600 (1995)
Bakry, D., Baudoin, F., Bonnefont, M., Chafaï, D.: On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255(8), 1905–1938 (2008)
Bakry, D., Baudoin, F., Bonnefont, M., Qian, B.: Subelliptic Li–Yau estimates on three dimensional model spaces. In: Potential Theory and Stochastics in Albac, pp. 1–10, Theta Ser. Adv. Math., 11. Theta, Bucharest (2009)
Baudoin, F., Bonnefont, M.: The subelliptic heat kernel on \({\rm SU}(2)\): representations, asymptotics and gradient bounds. Math. Z. 263(3), 647–672 (2009)
Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. JEMS 19(1), 151–219 (2017)
Coulhon, T., Müller, D., Zienkiewicz, J.: About Riesz transforms on the Heisenberg groups. Math. Ann. 305(2), 369–379 (1996)
Cowling, M., Sikora, A.: A spectral multiplier theorem for a sublaplacian on \(\rm SU(2)\). Math. Z. 238(1), 1–36 (2001)
Domelevo, K., Osȩkowski, A., Petermichl, S.: Various sharp estimates for semi-discrete Riesz transforms of the second order. In: 50 Years with Hardy Spaces, pp. 229–255, Oper. Theory Adv. Appl., 261. Birkhäuser/Springer, Cham (2018)
Domelevo, K., Petermichl, S.: Sharp \(L^p\) estimates for discrete second order Riesz transforms. Adv. Math. 262, 932–952 (2014)
Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79, 373–376 (1973)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)
Gundy, R.F., Varopoulos, N.T.: Les transformations de Riesz et les intégrales stochastiques. C. R. Acad. Sci. Paris Sér. A-B 289(1), A13–A16 (1979)
Li, X.-D.: On the weak \(L^p\)-Hodge decomposition and Beurling–Ahlfors transforms on complete Riemannian manifolds. Probab. Theory Relat. Fields 150(1–2), 111–144 (2011)
Li, X.-D.: Erratum to: On the weak \(L^p\) Hodge decomposition and Beurling–Ahlfors transforms on complete Riemannian manifolds. Probab. Theory Relat Fields 159(1–2), 409–411 (2014)
Sanjay, P.K., Thangavelu, S.: Revisiting Riesz transforms on Heisenberg groups. Rev. Mat. Iberoam. 28(4), 1091–1108 (2012)
Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ (1993)
Volberg, A., Nazarov, F.: Heat extension of the Beurling operator and estimates for its norm. Algebra i Analiz 15(4), 142–158 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
F.B. partly supported by the NSF Grant DMS 1901315. L.C. partly supported by Simons Collaboration Grant #853249.
Rights and permissions
About this article
Cite this article
Baudoin, F., Chen, L. A note on second order Riesz transforms in 3-dimensional Lie groups. Arch. Math. 118, 291–304 (2022). https://doi.org/10.1007/s00013-021-01699-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00013-021-01699-6
Keywords
- Second order Riesz transforms
- Martingale transform
- Sub-Laplacian
- Elliptic Laplacian
- Heisenberg groups
- 3- dimensional Lie groups.
Mathematics Subject Classification
- 58J65
- 60G46
- 22E30
- 43A80.