Skip to main content

A note on second order Riesz transforms in 3-dimensional Lie groups

Abstract

We prove explicit \(L^p\) bounds for second order Riesz transforms of the sub-Laplacian and of the Laplacian in the Lie groups \({\mathbb {H}}\), \(\mathbb {SU}(2)\), and \(\widetilde{\mathbb {SL}}(2)\). Our proof makes use of martingale transform techniques and specific commutation properties between the complex gradient and the sub-Laplacian in those Lie groups.

This is a preview of subscription content, access via your institution.

References

  1. Arcozzi, N., Domelevo, K., Petermichl, S.: Second order Riesz transforms on multiply-connected Lie groups and processes with jumps. Potential Anal. 45(4), 777–794 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bañuelos, R.: The foundational inequalities of D.L. Burkholder and some of their ramifications. Illinois J. Math. 54(3), 789–868 (2012), 2010

  3. Bañuelos, R., Baudoin, F.: Martingale transforms and their projection operators on manifolds. Potential Anal. 38(4), 1071–1089 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bañuelos, R., Baudoin, F., Chen, L.: Gundy–Varopoulos martingale transforms and their projection operators on manifolds and vector bundles. Math. Ann. 378(1–2), 359–388 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bañuelos, R., Lindeman, A., II.: A martingale study of the Beurling–Ahlfors transform in \({ R}^n\). J. Funct. Anal. 145(1), 224–265 (1997)

    Article  MathSciNet  Google Scholar 

  6. Bañuelos, R., Méndez-Hernández, P.J.: Space–time Brownian motion and the Beurling–Ahlfors transform. Indiana Univ. Math. J. 52(4), 981–990 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bañuelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms. Duke Math. J. 80(3), 575–600 (1995)

    Article  MathSciNet  Google Scholar 

  8. Bakry, D., Baudoin, F., Bonnefont, M., Chafaï, D.: On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255(8), 1905–1938 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bakry, D., Baudoin, F., Bonnefont, M., Qian, B.: Subelliptic Li–Yau estimates on three dimensional model spaces. In: Potential Theory and Stochastics in Albac, pp. 1–10, Theta Ser. Adv. Math., 11. Theta, Bucharest (2009)

  10. Baudoin, F., Bonnefont, M.: The subelliptic heat kernel on \({\rm SU}(2)\): representations, asymptotics and gradient bounds. Math. Z. 263(3), 647–672 (2009)

    Article  MathSciNet  Google Scholar 

  11. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. JEMS 19(1), 151–219 (2017)

    Article  MathSciNet  Google Scholar 

  12. Coulhon, T., Müller, D., Zienkiewicz, J.: About Riesz transforms on the Heisenberg groups. Math. Ann. 305(2), 369–379 (1996)

    Article  MathSciNet  Google Scholar 

  13. Cowling, M., Sikora, A.: A spectral multiplier theorem for a sublaplacian on \(\rm SU(2)\). Math. Z. 238(1), 1–36 (2001)

    Article  MathSciNet  Google Scholar 

  14. Domelevo, K., Osȩkowski, A., Petermichl, S.: Various sharp estimates for semi-discrete Riesz transforms of the second order. In: 50 Years with Hardy Spaces, pp. 229–255, Oper. Theory Adv. Appl., 261. Birkhäuser/Springer, Cham (2018)

  15. Domelevo, K., Petermichl, S.: Sharp \(L^p\) estimates for discrete second order Riesz transforms. Adv. Math. 262, 932–952 (2014)

    Article  MathSciNet  Google Scholar 

  16. Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79, 373–376 (1973)

    Article  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

  18. Gundy, R.F., Varopoulos, N.T.: Les transformations de Riesz et les intégrales stochastiques. C. R. Acad. Sci. Paris Sér. A-B 289(1), A13–A16 (1979)

  19. Li, X.-D.: On the weak \(L^p\)-Hodge decomposition and Beurling–Ahlfors transforms on complete Riemannian manifolds. Probab. Theory Relat. Fields 150(1–2), 111–144 (2011)

    Article  Google Scholar 

  20. Li, X.-D.: Erratum to: On the weak \(L^p\) Hodge decomposition and Beurling–Ahlfors transforms on complete Riemannian manifolds. Probab. Theory Relat Fields 159(1–2), 409–411 (2014)

    Article  Google Scholar 

  21. Sanjay, P.K., Thangavelu, S.: Revisiting Riesz transforms on Heisenberg groups. Rev. Mat. Iberoam. 28(4), 1091–1108 (2012)

    Article  MathSciNet  Google Scholar 

  22. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ (1993)

  23. Volberg, A., Nazarov, F.: Heat extension of the Beurling operator and estimates for its norm. Algebra i Analiz 15(4), 142–158 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F.B. partly supported by the NSF Grant DMS 1901315. L.C. partly supported by Simons Collaboration Grant #853249.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baudoin, F., Chen, L. A note on second order Riesz transforms in 3-dimensional Lie groups. Arch. Math. 118, 291–304 (2022). https://doi.org/10.1007/s00013-021-01699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-021-01699-6

Keywords

  • Second order Riesz transforms
  • Martingale transform
  • Sub-Laplacian
  • Elliptic Laplacian
  • Heisenberg groups
  • 3- dimensional Lie groups.

Mathematics Subject Classification

  • 58J65
  • 60G46
  • 22E30
  • 43A80.