Skip to main content
Log in

Extremal problems for spherical convex polygons

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

For all unit radius spherical convex k-gons of a fixed diameter \(\pi /2\), where \(3\le k\le n\) and n is odd, the regular spherical triangle has the maximal perimeter, and the regular spherical n-gon attains the maximal area. Besides, for all unit radius spherical convex k-gons of a fixed thickness \(\pi /2\), where \(3\le k\le n\) and n is odd, the regular spherical n-gon attains the minimum perimeter, and the regular triangle reaches the minimal area. Particularly, the reduced spherical polygons reach the maximal thickness (resp. minimal diameter) \(\pi /2\) among all spherical convex polygons of fixed diameter (resp. thickness) \(\pi /2\). Moreover, when n is odd or even, a few conclusions of unit radius spherical convex n-gons are established, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons. J. Global Optim. 38(2), 163–179 (2007)

    Article  MathSciNet  Google Scholar 

  2. Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter. J. Combin. Theory Ser. A. 114(1), 135–150 (2007)

    Article  MathSciNet  Google Scholar 

  3. Audet, C., Ninin, J., Messine, F.: Isoperimetric polygons of maximal width. Discrete Comput. Geom. 41(1), 45–60 (2009)

    Article  MathSciNet  Google Scholar 

  4. Audet, C., Hansen, P., Svrtan, D.: Using symbolic calculations to determine largest small polygons. J. Global Optim. 81(1), 261–268 (2021)

    Article  MathSciNet  Google Scholar 

  5. Araújo, P.V.: Barbier’s theorem for the sphere and the hyperbolic plane. Enseign. Math. 42, 295–309 (1996)

  6. Bezdek, A., Fodor, F.: On convex polygons of maximal width. Arch. Math. (Basel) 74, 75–80 (2000)

    Article  MathSciNet  Google Scholar 

  7. Brczky, K.J., Sagmeister, A.: The isodiametric problem on the sphere and in the hyperbolic space. Acta Math. Hungar. 160(1), 13–32 (2020)

    Article  MathSciNet  Google Scholar 

  8. Blåsjö, V.: The isoperimetric problem. Amer. Math. Monthly 112, 526–566 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chang, Y., Liu, C., Su, Z.: The perimeter and area of reduced spherical polygons of thickness \(\frac{\pi }{2}\). Results Math. 75, 135 (2020)

    Article  MathSciNet  Google Scholar 

  10. Datta, B.: A discrete isoperimeteric problem. Geom. Dedicata. 64(1), 55–68 (1997)

    Article  MathSciNet  Google Scholar 

  11. Graham, R.L.: The largest small hexagon. J. Combin. Theory Ser. A. 18, 165–170 (1975)

    Article  MathSciNet  Google Scholar 

  12. Lassak, M.: Width of spherical convex bodies. Aequationes Math. 89, 555–567 (2015)

    Article  MathSciNet  Google Scholar 

  13. Lassak, M.: Reduced spherical polygons. Colloq. Math. 138(2), 205–216 (2015)

    Article  MathSciNet  Google Scholar 

  14. Lassak, M.: Diameter, width and thickness of spherical reduced convex bodies with an application to Wulff shapes. Beitr. Algebra Geom. 61, 369–378 (2020)

    Article  MathSciNet  Google Scholar 

  15. Mossinghoff, M.J.: A \$1 problem. Amer. Math. Monthly 113(5), 385-402 (2006)

  16. Mossinghoff, M.J.: Isodiametric problems for polygons. Discrete Comput. Geom. 36(2), 363–379 (2006)

    Article  MathSciNet  Google Scholar 

  17. Mossinghoff, M.J.: Enumerating isodiametric and isoperimetric polygons. J. Combin. Theory Ser. A. 118(6), 1801–1815 (2011)

    Article  MathSciNet  Google Scholar 

  18. Päl, J.: Ein Minimumproblem für Ovale. Math. Ann. 83, 311–319 (1921)

    Article  MathSciNet  Google Scholar 

  19. Reinhardt, K.: Extremale Polygone gegebenen Durchmessers. Jahresber. Deutsch. Math.-Verein. 31, 251–270 (1922)

    Google Scholar 

Download references

Acknowledgements

The last part of the paper was added according to the suggestion of an anonymous reviewer. The authors would like to thank the referees for their many valuable comments and suggestions that helped us to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxun Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC under Grant 11971053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chang, Y. Extremal problems for spherical convex polygons. Arch. Math. 118, 435–450 (2022). https://doi.org/10.1007/s00013-021-01698-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-021-01698-7

Keywords

Mathematics Subject Classification

Navigation