Skip to main content
Log in

Macphail’s theorem revisited

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In 1947, M.S. Macphail constructed a series in \(\ell _{1}\) that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach space theory, by showing that in all infinite-dimensional Banach spaces, there exists an unconditionally summable sequence that fails to be absolutely summable. More precisely, the Dvoretzky–Rogers theorem asserts that in every infinite-dimensional Banach space E, there exists an unconditionally convergent series \(\sum x^{\left( j\right) }\) such that \(\sum \Vert x^{(j)}\Vert ^{2-\varepsilon }=\infty \) for all \(\varepsilon >0\). Their proof is non-constructive and Macphail’s result for \(E=\ell _{1}\) provides a constructive proof just for \(\varepsilon \ge 1\). In this note, we revisit Macphail’s paper and present two alternative constructions that work for all \(\varepsilon >0.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araújo, G., Santos, J.: On the Maurey–Pisier and Dvoretzky–Rogers theorems. Bull. Braz. Math. Soc. 51, 1–9 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bayart, F., Pellegrino, D., Rueda, P.: On coincidence results for summing multilinear operators: interpolation, \(\ell _{1}\)-spaces and cotype. Collect. Math. 71(2), 301–318 (2020)

    Article  MathSciNet  Google Scholar 

  3. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  4. Dvoretzky, A., Rogers, C.A.: Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. USA 36, 192–197 (1950)

    Article  MathSciNet  Google Scholar 

  5. Gordon, Y.: On the projection and Macphail constants of \(\ell _{p}^{n}\) spaces. Israel J. Math. 6, 295–302 (1968)

    Article  MathSciNet  Google Scholar 

  6. Kadets, M.I., Kadets, V.M.: Series in Banach Spaces. Conditional and Unconditional Convergence (Translated from the Russian by Andrei Iacob). Operator Theory: Advances and Applications, vol. 94. Birkhäuser, Basel (1997)

  7. Kvaratskhelia, V.V.: Unconditional convergence of functional series in problems of probability theory (Translated from Sovrem. Mat. Prilozh. No. 86 (2013)). J. Math. Sci. (N.Y.) 200(2), 143–294 (2014)

  8. Macphail, M.S.: Absolute and unconditional convergence. Bull. Amer. Math. Soc. 53, 121–123 (1947)

    Article  MathSciNet  Google Scholar 

  9. Mastyło, M., Szwedek, R.: Kahane–Salem–Zygmund polynomial inequalities via Rademacher processes. J. Funct. Anal. 272(11), 4483–4512 (2017)

    Article  MathSciNet  Google Scholar 

  10. Mauldin, D. (ed.): The Scottish Book. Birkhäuser, Boston (1981)

    MATH  Google Scholar 

  11. Pellegrino, D., Serrano-Rodríguez, D., Silva, J.: On unimodular multilinear forms with small norms on sequence spaces. Linear Algebra Appl. 595, 24–32 (2020)

    Article  MathSciNet  Google Scholar 

  12. Pietsch, A.: History of Banach Spaces and Linear Operators. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  13. Rutovitz, D.: Absolute and unconditional convergence in normed linear spaces. Proc. Camb. Philos. Soc. 58, 575–579 (1962)

    Article  MathSciNet  Google Scholar 

  14. Rutovitz, D.: Some parameters associated with finite-dimensional Banach spaces. J. Lond. Math. Soc. 40, 241–255 (1965)

    Article  MathSciNet  Google Scholar 

  15. Singer, I.: A proof of the Dvoretzky–Rogers theorem. Israel J. Math. 2, 249–250 (1964)

    Article  MathSciNet  Google Scholar 

  16. Toeplitz, O.: Über eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlich vielen Veränderlichen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 417–432 (1913)

  17. Walsh, J.L.: A closed set of normal orthogonal functions. Amer. J. Math. 45(1), 5–24 (1923)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for the corrections that helped to improve the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pellegrino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Pellegrino is supported by CNPq Grant 307327/2017-5 and Grant 2019/0014 Paraiba State Research Foundation (FAPESQ) and J. Silva is supported by CAPES.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrino, D., Silva, J. Macphail’s theorem revisited. Arch. Math. 117, 647–656 (2021). https://doi.org/10.1007/s00013-021-01676-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-021-01676-z

Keywords

Mathematics Subject Classification

Navigation