Skip to main content
Log in

A cubic ring of integers with the smallest Pythagoras number

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We prove that the ring of integers in the totally real cubic subfield \(K^{(49)}\) of the cyclotomic field \({\mathbb {Q}}(\zeta _7)\) has Pythagoras number equal to 4. This is the smallest possible value for a totally real number field of odd degree. Moreover, we determine which numbers are sums of integral squares in this field, and use this knowledge to construct a diagonal universal quadratic form in five variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becher, K.J., Grimm, D., Van Geel, J.: Sums of squares in algebraic function fields over a complete discretely valued field. Pac. J. Math. 276(2), 257–276 (2014)

    Article  MathSciNet  Google Scholar 

  2. Becher, K.J., Leep, D.B.: The length and other invariants of a real field. Math. Z. 269, 235–252 (2011)

    Article  MathSciNet  Google Scholar 

  3. Becher, K.J., Van Geel, J.: Sums of squares in function fields of hyperelliptic curves. Math. Z. 261, 829–844 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cohn, H., Pall, G.: Sums of four squares in a quadratic ring. Trans. Amer. Math. Soc. 105, 536–556 (1962)

    Article  MathSciNet  Google Scholar 

  5. Dzewas, J.: Quadratsummen in reell-quadratischen Zahlkörpern. Math. Nachr. 21, 233–284 (1960)

    Article  MathSciNet  Google Scholar 

  6. Earnest, A., Khosravani, A.: Universal positive quaternary quadratic lattices over totally real number fields. Mathematika 44(2), 342–347 (1997)

    Article  MathSciNet  Google Scholar 

  7. Hoffmann, D.W.: Pythagoras numbers of fields. J. Amer. Math. Soc. 12(3), 839–848 (1999)

    Article  MathSciNet  Google Scholar 

  8. Hu, Y.: The Pythagoras number and the \(u\)-invariant of Laurent series fields in several variables. J. Algebra 426, 243–258 (2015)

    Article  MathSciNet  Google Scholar 

  9. Kim, M.-H., Oh, B.-K.: Bounds for quadratic Waring’s problem. Acta Arith. 104, 155–164 (2002)

  10. Krásenský, J.: Pythagoras number of non-maximal orders in biquadratic fields. To Appear

  11. Kala, V., Tinková, M.: Universal quadratic forms, small norms and traces in families of number fields. arXiv:2005.12312 (2020)

  12. Kala, V., Yatsyna, P.: Lifting problem for universal quadratic forms. Adv. Math. 377, 24 (2021)

  13. Krásenský, J., Raška, M., Sgallová, E.: Pythagoras numbers of orders in biquadratic fields. arXiv:2105.08860 (2021)

  14. Lam, T. Y.: Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics, 67. American Mathematical Society, Providence, RI (2005)

  15. Maaß, H.: Über die Darstellung total positiver Zahlen des Körpers R(\(\sqrt{5}\)) als Summe von drei Quadraten. Abh. Math. Sem. Hansischen Univ. 14, 185–191 (1941)

    Article  MathSciNet  Google Scholar 

  16. Milne, J.S.: Algebraic Number Theory. Version 3.08 (2020) www.jmilne.org/math/

  17. O’Meara, O.T.: Introduction to Quadratic Forms. Springer, Berlin (1973)

  18. Peters, M.: Summen von Quadraten in Zahlringen. J. Reine Angew. Math. 268(269), 318–323 (1974)

    MathSciNet  MATH  Google Scholar 

  19. Peters, M.: Einklassige Geschlechter von Einheitsformen in totalreellen algebraischen Zahlkörpern. Math. Ann. 226, 117–120 (1977)

    Article  MathSciNet  Google Scholar 

  20. Pfister, A.: Quadratic Forms with Applications to Algebraic Geometry and Topology. London Mathematical Society Lecture Note Series, 217. Cambridge University Press (1995)

  21. Scharlau, R.: On the Pythagoras number of orders in totally real number fields. J. Reine Angew. Math. 316, 208–210 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Scharlau, R.: Zur Darstellbarkeit von totalreellen ganzen algebraischen Zahlen durch Summen von Quadraten. Dissertation at Universität Bielefeld (1979)

  23. Shanks, D.: The simplest cubic number fields. Math. Comp. 28, 1137–1152 (1974)

    Article  MathSciNet  Google Scholar 

  24. Tinková, M.: On the Pythagoras number of the simplest cubic fields. arXiv:2101.11384 (2021)

  25. Tikhonov, S.V., Van Geel, J., Yanchevskii, V.I.: Pythagoras numbers of function fields of hyperelliptic curves with good reduction. Manuscripta Math. 119, 305–322 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Krásenský.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author aknowledges partial support by project PRIMUS/20/SCI/002 from Charles University, by Czech Science Foundation GAČR, grant 21-00420M, by projects GA UK No. 742120 and UNCE/SCI/022 from Charles University, and by SVV-2020-260589.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krásenský, J. A cubic ring of integers with the smallest Pythagoras number. Arch. Math. 118, 39–48 (2022). https://doi.org/10.1007/s00013-021-01662-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-021-01662-5

Keywords

Mathematics Subject Classification

Navigation