Skip to main content
Log in

On the strong maximum principle for a fractional Laplacian

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we obtain a version of the strong maximum principle for the spectral Dirichlet Laplacian. Specifically, let \(d \in \{1,2,3,\ldots \}\), \(s \in (\frac{1}{2},1)\), and \(\Omega \subset \mathbb {R}^d\) be open, bounded, connected with Lipschitz boundary. Suppose \(u \in L^1(\Omega )\) satisfies \(u \ge 0\) a.e. in \(\Omega \) and \((-\Delta )^s u\) is a Radon measure on \(\Omega \). Then u has a quasi-continuous representative \({\tilde{u}}\). Let \(a \in L^1(\Omega )\) be such that \(a \ge 0\) a.e. in \(\Omega \). Then if

$$\begin{aligned} (-\Delta )^s u + au \ge 0 \quad \text {a.e.} \text { in } \Omega \end{aligned}$$

and \({\tilde{u}} = 0\) on a subset of positive \(H^s\)-capacity of \(\Omega \), then \(u = 0\) a.e. in \(\Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arendt, W., ter Elst, A.F.M.: The Dirichlet problem without the maximum principle. Ann. Inst. Fourier (Grenoble) 69(2), 763–782 (2019)

    Article  MathSciNet  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam (2003)

  3. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, 314. Springer, Berlin (1996)

  4. Ancona, A.: Une propriété d’invariance des ensembles absorbants par perturbation d’un opérateur elliptique. Comm. Partial Differential Equations 4, 321–337 (1979)

    Article  MathSciNet  Google Scholar 

  5. Benilan, P., Brezis, H.: Nonlinear problems related to the Thomas–Fermi equation. J. Evol. Equ. 3, 673–770 (2003)

    Article  MathSciNet  Google Scholar 

  6. Barrios, B., Medina, M.: Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A Math. 150, 475–495 (2019)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H., Ponce, A.C.: Remarks on the strong maximum principle. Differential Integral Equations 16(1), 1–12 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Bertsch, M., Smarrozzo, F., Tesei, A.: A note on the strong maximum principle. J. Differential Equations 250(8), 4356–4375 (2015)

    Article  MathSciNet  Google Scholar 

  9. Cordoba, A., Cordoba, D.: A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249(3), 511–528 (2004)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807 (2016)

    Article  MathSciNet  Google Scholar 

  11. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010)

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der MathematischenWissenschaften, 224. Springer, Berlin (1983)

  14. Musina, R., Nazarov, A.I.: Strong maximum principles for fractional Laplacians. Proc. Roy. Soc. Edinburgh Sect. A Math. 149, 1223–1240 (2019)

    Article  MathSciNet  Google Scholar 

  15. Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15, 733–791 (2015)

    Article  MathSciNet  Google Scholar 

  16. Orsina, L., Ponce, A.C.: Strong maximum principle for Schrodinger operators with singular potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(2), 477–493 (2016)

    Article  MathSciNet  Google Scholar 

  17. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  Google Scholar 

  18. Stampacchia, G.: Équations Elliptiques du Second Ordre à Coefficients Discontinus. Les Presses de l’Université de Montréal, Montréal (1966)

    MATH  Google Scholar 

  19. Tan, J.: Positive solutions for non local elliptic problems. Discrete Contin. Dyn. Syst. 33(2), 837–859 (2013)

    Article  MathSciNet  Google Scholar 

  20. Thanh, B.L.T.: On the well-posedness of a spectral fractional forward–backward pseudo-parabolic equation. Comput. Math. Appl. 77(2), 323–333 (2019)

    Article  MathSciNet  Google Scholar 

  21. Trudinger, N.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa 27, 265–308 (1973)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Duc Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trong, N.N., Tan, D.D. & Thanh, B.L.T. On the strong maximum principle for a fractional Laplacian. Arch. Math. 117, 203–213 (2021). https://doi.org/10.1007/s00013-021-01624-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-021-01624-x

Keywords

Subject Classification

Navigation