Skip to main content
Log in

A remark on the Brauer–Fowler theorems

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let G be a finite group of even order that has no 2-rank 1. We will prove, using only elementary methods, that there is an involution \(t \in G\) such that \(|G| < |C_{G}(t)|^{6}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brauer, R., Fowler, K.A.: On groups of even order. Ann. Math. (2) 62, 565–583 (1955)

  2. Brauer, R., Suzuki, M.: On finite groups of even order whose 2-Sylow group is a quaternion group. Proc. Nat. Acad. Sci. USA 45, 1757–1759 (1959)

  3. Brauer, R.: Some applications of the theory of blocks of characters of finite groups. III. J. Algebra 3, 225–255 (1966)

    Article  MathSciNet  Google Scholar 

  4. Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pac. J. Math. 13, 775–1029 (1963)

    Article  MathSciNet  Google Scholar 

  5. Gorenstein, D.: Finite Groups, 2nd edn. Chelsea Publishing Co., New York (1980)

    MATH  Google Scholar 

  6. Guralnick, R.M., Robinson, G.R.: Variants of some of the Brauer–Fowler theorems. J. Algebra 558, 453–484 (2020)

    Article  MathSciNet  Google Scholar 

  7. Hall, M.: The Theory of Groups. Reprinting of the 1968 edition. Chelsea Publishing Co., New York (1976)

  8. Liebeck, H., MacHale, D.: Groups with automorphisms inverting most elements. Math. Z. 124, 51–63 (1972)

    Article  MathSciNet  Google Scholar 

  9. Suzuki, M.: Finite groups with nilpotent centralizers. Trans. Amer. Math. Soc. 99, 425–470 (1961)

  10. Wielandt, H.: Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe. Math. Z. 73, 146–158 (1960)

  11. Yamaki, H.: The order of a group of even order. Proc. Amer. Math. Soc. 136(2), 397–402 (2008)

  12. Wall, C.T.C.: On groups consisting mostly of involutions. Proc. Camb. Philos. Soc. 67, 251–262 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Jabara.

Additional information

To Carlo Casolo, in memoriam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabara, E. A remark on the Brauer–Fowler theorems. Arch. Math. 116, 601–609 (2021). https://doi.org/10.1007/s00013-020-01574-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-020-01574-w

Keywords

Mathematics Subject Classification

Navigation