Abstract
Let G be a finite group of even order that has no 2-rank 1. We will prove, using only elementary methods, that there is an involution \(t \in G\) such that \(|G| < |C_{G}(t)|^{6}\).
Similar content being viewed by others
References
Brauer, R., Fowler, K.A.: On groups of even order. Ann. Math. (2) 62, 565–583 (1955)
Brauer, R., Suzuki, M.: On finite groups of even order whose 2-Sylow group is a quaternion group. Proc. Nat. Acad. Sci. USA 45, 1757–1759 (1959)
Brauer, R.: Some applications of the theory of blocks of characters of finite groups. III. J. Algebra 3, 225–255 (1966)
Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pac. J. Math. 13, 775–1029 (1963)
Gorenstein, D.: Finite Groups, 2nd edn. Chelsea Publishing Co., New York (1980)
Guralnick, R.M., Robinson, G.R.: Variants of some of the Brauer–Fowler theorems. J. Algebra 558, 453–484 (2020)
Hall, M.: The Theory of Groups. Reprinting of the 1968 edition. Chelsea Publishing Co., New York (1976)
Liebeck, H., MacHale, D.: Groups with automorphisms inverting most elements. Math. Z. 124, 51–63 (1972)
Suzuki, M.: Finite groups with nilpotent centralizers. Trans. Amer. Math. Soc. 99, 425–470 (1961)
Wielandt, H.: Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe. Math. Z. 73, 146–158 (1960)
Yamaki, H.: The order of a group of even order. Proc. Amer. Math. Soc. 136(2), 397–402 (2008)
Wall, C.T.C.: On groups consisting mostly of involutions. Proc. Camb. Philos. Soc. 67, 251–262 (1970)
Author information
Authors and Affiliations
Corresponding author
Additional information
To Carlo Casolo, in memoriam.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jabara, E. A remark on the Brauer–Fowler theorems. Arch. Math. 116, 601–609 (2021). https://doi.org/10.1007/s00013-020-01574-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00013-020-01574-w