Skip to main content
Log in

A remark on the field of moduli of Riemann surfaces

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let S be a closed Riemann surface of genus \(g\ge 2\) and let \(\mathrm{Aut}(S)\) be its group of conformal automorphisms. It is well known that if either: (i) \(\mathrm{Aut}(S)\) is trivial or (ii) \(S/\mathrm{Aut}(S)\) is an orbifold of genus zero with exactly three cone points, then S is definable over its field of moduli \({{\mathcal {M}}}(S)\). In the complementary situation, explicit examples for which \({{\mathcal {M}}}(S)\) is not a field of definition are known. We provide upper bounds for the minimal degree extension of \({{\mathcal {M}}}(S)\) by a field of definition in terms of the quotient orbifold \(S/\mathrm{Aut}(S)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Artebani, M., Quispe, S.: Fields of moduli and fields of definition of odd signature curves. Arch. Math. (Basel) 99(4), 333–344 (2012)

    Article  MathSciNet  Google Scholar 

  2. Beardon, A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91. Springer, New York (1983)

    Book  Google Scholar 

  3. Cardona, G., Quer, J.: Field of moduli and field of definition for curves of genus 2. In: Computational Aspects of Algebraic Curves. Lecture Notes Series on Computing, vol. 13, pp. 71–83. World Scientific Publishing, Hackensack (2005)

  4. Dèbes, P., Emsalem, M.: On fields of moduli of curves. J. Algebra 211, 42–56 (1999)

    Article  MathSciNet  Google Scholar 

  5. Earle, C.J.: On the moduli of closed Riemann surfaces with symmetries. In: Ahlfors, L.V., et al. (eds.) Advances in the Theory of Riemann Surfaces, pp. 119–130. Princeton University Press, Princeton (1971)

    Chapter  Google Scholar 

  6. Earle, C.J.: Diffeomorphisms and automorphisms of compact hyperbolic 2-orbifolds. In: Gardiner, F., González-Diez, G., Kourouniotis, C. (eds.) Geometry of Riemann Surfaces. London Mathematical Society Lecture Note Series, vol. 368, pp. 139–155. Cambridge University Press, Cambridge (2010)

    Chapter  Google Scholar 

  7. Fuertes, Y., González-Diez, G., Hidalgo, R.A., Leyton, M.: Automorphism group of generalized Fermat curves of type \((k,3)\). J. Pure Appl. Algebra 217(10), 1791–1806 (2013)

    Article  MathSciNet  Google Scholar 

  8. Fuertes, Y., Streit, M.: Genus \(3\) normal coverings of the Riemann sphere branched over \(4\) points. Rev. Mat. Iberoam. 22(2), 413–454 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hammer, H., Herrlich, F.: A remark on the moduli field of a curve. Arch. Math. (Basel) 81, 5–10 (2003)

    Article  MathSciNet  Google Scholar 

  10. Hidalgo, R.A.: Non-hyperelliptic Riemann surfaces with real field of moduli but not definable over the reals. Arch. Math. (Basel) 93, 219–222 (2009)

    Article  MathSciNet  Google Scholar 

  11. Hidalgo, R.A., Kontogeorgis, A., Leyton-Álvarez, M., Paramantzoglou, P.: Automorphisms of the generalized Fermat curves. J. Pure Appl. Algebra 221, 2312–2337 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hidalgo, R.A., Johnson, P.: Field of moduli of generalized Fermat curves with an application to non-hyperelliptic dessins d’enfants. J. Symb. Comput. 71, 60–72 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hidalgo, R.A., Reyes-Carocca, S.: A constructive proof of Weil’s Galois descent theorem. arXiv:1203.6294

  14. Huggins, B.: Fields of Moduli and Fields of Definition of Curves. Ph.D. thesis, UCLA (2005)

  15. Huggins, B.: Fields of moduli of hyperelliptic curves. Math. Res. Lett. 14(2), 249–262 (2007)

    Article  MathSciNet  Google Scholar 

  16. Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 (1893)

    Article  Google Scholar 

  17. Koizumi, S.: The fields of moduli for polarized abelian varieties and for curves. Nagoya Math. J. 48, 37–55 (1972)

    Article  MathSciNet  Google Scholar 

  18. Kontogeorgis, A.: Field of moduli versus field of definition for cyclic covers of the projective line. J. de Theorie des Nombres de Bordeaux 21, 679–692 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Lercier, R., Ritzenthaler, C.: Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. J. Algebra 372, 595–636 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lercier, R., Ritzenthaler, C., Rovetta, F., Sisling, J.: Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields. LMS J. Comput. Math. 17(Special Issue A), 128–147 (2014)

    Article  MathSciNet  Google Scholar 

  21. Lercier, R., Ritzenthaler, C., Sijsling, J.: Explicit Galois obstruction and descent for hyperelliptic curves with tamely cyclic reduced automorphism group. Math. Comp. 85, 2011–2045 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mestre, J.-F.: Construction de courbes de genre \(2\) à partir de leurs modules (French) [Constructing genus-\(2\) curves from their moduli]. In: Effective methods in algebraic geometry (Castiglioncello, 1990). Progress in Mathematical, vol. 94, pp. 313–334. Birkhäuser, Boston (1991)

  23. Rodríguez, R.E., González-Aguilera, V.: Fermat’s quartic curve, Klein’s curve and the tetrahedron. Contemp. Math. 201, 43–62 (1997)

    Article  MathSciNet  Google Scholar 

  24. Schwartz, H.A.: Über diejenigen algebraischen Gleichungen zwischen zwei veränderlichen Größen, welche eine Schaar rationaler, eindeutig umkehrbarer Transformationen in sich selbst zulassen. Journal für die reine und angewandte Mathematik 87, 139–145 (1890)

    Google Scholar 

  25. Shimura, G.: On the field of rationality for an abelian variety. Nagoya Math. J. 45, 167–178 (1972)

    Article  MathSciNet  Google Scholar 

  26. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, Dordrecht (2009)

  27. Singerman, D.: Finitely maximal Fuchsian groups. J. Lond. Math. Soc. 6(2), 29–38 (1972)

    Article  MathSciNet  Google Scholar 

  28. Swinarski, D.: Equations of Riemann surfaces of genus \(4\), \(5\) and \(6\) with large automorphisms groups. https://faculty.fordham.edu/dswinarski/publications/SwinarskiEquations.pdf

  29. Weil, A.: The field of definition of a variety. Am. J. Math. 78, 509–524 (1956)

    Article  MathSciNet  Google Scholar 

  30. Wolfart, J.: \(ABC\) for polynomials, dessins d’enfants and uniformization—a survey. In: Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, 20, Franz Steiner Verlag Stuttgart, Stuttgart, pp. 313–345 (2006)

Download references

Acknowledgements

The author would like to express his deep gratitude to the referee for supplying very useful comments, suggestions, and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén A. Hidalgo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by Project Fondecyt 1190001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, R.A. A remark on the field of moduli of Riemann surfaces. Arch. Math. 114, 515–526 (2020). https://doi.org/10.1007/s00013-019-01411-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-019-01411-9

Keywords

Mathematics Subject Classification

Navigation