Skip to main content
Log in

The distinguishing number of quasiprimitive and semiprimitive groups

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The distinguishing number of \(G \leqslant \mathrm {Sym}(\Omega )\) is the smallest size of a partition of \(\Omega \) such that only the identity of G fixes all the parts of the partition. Extending earlier results of Cameron, Neumann, Saxl, and Seress on the distinguishing number of finite primitive groups, we show that all imprimitive quasiprimitive groups have distinguishing number two, and all non-quasiprimitive semiprimitive groups have distinguishing number two, except for \(\mathrm {GL}(2,3)\) acting on the eight non-zero vectors of \(\mathbb {F}_3^2\), which has distinguishing number three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, M.: Finite Group Theory, Cambridge Studies in Advanced Mathematics, vol. 10. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  2. Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bereczky, Á., Maróti, A.: On groups with every normal subgroup transitive or semiregular. J. Algebra 319, 1733–1751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cameron, P.J.: Regular orbits of permutation groups on the power set. Discrete Math. 62, 307–309 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannon, J.J., Holt, D.F.: The transitive permutation groups of degree 32. Exp. Math. 17, 307–314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cameron, P.J., Neumann, P.M., Saxl, J.: On groups with no regular orbits on the set of subsets. Arch. Math. 43, 295–296 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, M.: The maximum distinguishing number of a group. Electron. J. Combin. 13, R70 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Chan, M.: The distinguishing number of the direct product and wreath product constructions. J. Algebr. Comb. 24, 331–345 (2006)

    Article  MATH  Google Scholar 

  10. Dolfi, S.: Orbits of permutation groups on the power set. Arch. Math. 75, 321–327 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duyan, H., Halasi, Z., Maróti, A.: A proof of Pyber’s base size conjecture. Adv. Math. 331, 720–747 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giudici, M., Morgan, L.: A theory of semiprimitive groups. J. Algebra 503, 146–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halasi, Z.: On the base size of the symmetric group acting on subsets. Stud. Sci. Math. Hung. 49, 492–500 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Holt, D., Plesken, W.: Perfect Groups, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press (1989)

  15. Hulpke, A.: Constructing transitive permutation groups. J. Symb. Comput. 39, 1–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klavžar, S., Wong, T., Zhu, X.: Distinguishing labellings of group action on vector spaces and graphs. J. Algebra 303, 626–641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liebeck, M.W., Praeger, C.E., Saxl, J.: On the O’Nan–Scott theorem for finite primitive permutation groups. J. Aust. Math. Soc. 44, 389–396 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Morgan, L., Praeger, C.E., Rosa, K.: Bounds for finite semiprimitive permutation groups: order, base size, and minimal degree, preprint (arXiv:1806.00941)

  19. Potočnik, P., Spiga, P., Verret, G.: On graph-restrictive permutation groups. J. Combin. Theory Ser. B 102, 820–831 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Praeger, C.E.: Imprimitive symmetric graphs. Ars Combin. 19, 149–163 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Praeger, C.E.: An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc. 47, 227–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Praeger, C.E., Shalev, A.: Bounds on finite quasiprimitive permutation groups. J. Aust. Math. Soc. 71, 243–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roney-Dougal, C.M.: The primitive permutation groups of degree less than 2500. J. Algebra 292, 154–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Seress, Á.: Primitive groups with no regular orbits on the set of subsets. Bull. Lond. Math. Soc. 29, 697–704 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbott, R.: Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/

Download references

Acknowledgements

The authors thank Gabriel Verret for highlighting this problem and the Centre for the Mathematics of Symmetry and Computation, where this work began at the 2018 Research Retreat. The second author is grateful for the Cecil King Travel Scholarship from the LMS and the hospitality of the University of Western Australia; he also thanks EPSRC and the Heilbronn Institute for Mathematical Research for their financial support. The third author gratefully acknowledges the support of the ARC grant DE160100081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Morgan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devillers, A., Morgan, L. & Harper, S. The distinguishing number of quasiprimitive and semiprimitive groups. Arch. Math. 113, 127–139 (2019). https://doi.org/10.1007/s00013-019-01324-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-019-01324-7

Keywords

Mathematics Subject Classification

Navigation