Skip to main content
Log in

Hermite’s theorem via Galois cohomology

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

An 1861 theorem of Hermite asserts that for every field extension E / F of degree 5 there exists an element of E whose minimal polynomial over F is of the form \(f(x) = x^5 + c_2 x^3 + c_4 x + c_5\) for some \(c_2, c_4, c_5 \in F\). We give a new proof of this theorem using techniques of Galois cohomology, under a mild assumption on F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M.: Algebra. Prentice Hall Inc., Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  2. Buhler, J., Reichstein, Z.: On the essential dimension of a finite group. Compos. Math. 106(2), 159–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brassil, M., Reichstein, Z.: The Hermite–Joubert problem over \(p\)-closed fields. In: Algebraic Groups: Structure and Actions, Proceedings of Symposium Pure Mathematics, vol. 94, pp. 31–51. American Mathematical Society, Providence, RI (2017)

  4. Beauville, A.: Finite subgroups of \({\rm PGL}_2(K)\). In: Vector Bundles and Complex Geometry, Contemporary Mathematics, vol. 522, pp. 23–29. American Mathematical Society, Providence, RI (2010)

  5. Berhuy, G., Favi, G.: Essential dimension: a functorial point of view (after A. Merkurjev). Doc. Math. 8, 279–330 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Berhuy, G., Favi, G.: Essential dimension of cubics. J. Algebra 278(1), 199–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coray, D.F.: Cubic hypersurfaces and a result of Hermite. Duke Math. J. 54, 657–670 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hermite, C.: Sur l’invariant du dix-huitième ordre des formes du cinquième degré. J. Reine Angew. Math. 59, 304–305 (1861)

    Article  MathSciNet  Google Scholar 

  9. Joubert, P.: Sur l’equation du sixième degré. C-R. Acad. Sc. Paris 64, 1025–1029 (1867)

    Google Scholar 

  10. Kollár, J.: Unirationality of cubic hypersurfaces. J. Inst. Math. Jussieu 1(3), 467–476 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kraft, H.: A result of Hermite and equations of degree 5 and 6. J. Algebra 297, 234–253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meyer, A., Reichstein, Z.: The essential dimension of the normalizer of a maximal torus in the projective linear group. Algebra Number Theory 3(4), 467–487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pfister, A.: Quadratic Forms with Applications to Algebraic Geometry and Topology, London Mathematical Society Lecture Note Series, vol. 217. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  14. Reichstein, Z.: Essential dimension. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 162–188. Hindustan Book Agency, New Delhi (2010)

  15. Serre, J.-P.: Extensions icosaédriques. In: Seminar on Number Theory, 1979–1980 (French), Exp. 19, 7 pp, Univ. Bordeaux I, Talence (1980)

  16. Serre, J.-P.: Galois Cohomology, translated from the French by Patrick Ion and revised by the author. Springer, Berlin (1997)

  17. Serre, J.-P.: Cohomological invariants, Witt invariants, and trace forms, notes by Skip Garibaldi. In: Cohomological Invariants in Galois Cohomology, University Lecture Series, vol. 28, pp. 1–100. American Mathematical Society, Providence, RI (2003)

Download references

Acknowledgements

We are grateful to Maxime Bergeron and Rohit Nigpal for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinovy Reichstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zinovy Reichstein was partially supported by National Sciences and Engineering Research Council of Canada Discovery Grant 253424-2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brassil, M., Reichstein, Z. Hermite’s theorem via Galois cohomology. Arch. Math. 112, 467–473 (2019). https://doi.org/10.1007/s00013-019-01299-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-019-01299-5

Keywords

Mathematics Subject Classification

Navigation