Skip to main content
Log in

The Dirichlet problem for the \(\alpha \)-singular minimal surface equation

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb {R}^n\) be a bounded mean convex domain. If \(\alpha <0\), we prove the existence and uniqueness of classical solutions of the Dirichlet problem in \(\Omega \) for the \(\alpha \)-singular minimal surface equation with arbitrary continuous boundary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bemelmans, J., Dierkes, U.: On a singular variational integral with linear growth, I: existence and regularity of minimizers. Arch. Ration. Mech. Anal. 100, 83–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böhme, R., Hildebrandt, S., Taush, E.: The two-dimensional analogue of the catenary. Pac. J. Math. 88, 247–278 (1980)

    Article  MathSciNet  Google Scholar 

  3. Dierkes, U.: A geometric maximum principle, Plateau’s problem for surfaces of prescribed mean curvature, and the two-dimensional analogue of the catenary. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, vol. 1357, pp. 116–141. Springer, Berlin (1988)

  4. Dierkes, U.: A Bernstein result for energy minimizing hypersurfaces. Calc. Var. Part. Differ. Equ. 1(1), 37–54 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dierkes, U.: On the regularity of solutions for a singular variational problem. Math. Z. 225, 657–670 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dierkes, U.: Singular minimal surfaces. In: Hildebrandt, S., Leis, R. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 177–193. Springer, Berlin (2003)

  7. Dierkes, U., Huisken, G.: The \(n\)-dimensional analogue of the catenary: existence and nonexistence. Pac. J. Math. 141, 47–54 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  9. Jenkins, H., Serrin, J.: The Dirichlet problem for the minimal surface equation in higher dimensions. J. Reine Angew. Math. 229, 170–187 (1968)

    MathSciNet  MATH  Google Scholar 

  10. Keiper, J.B.: The axially symmetric \(n\)-tectum, preprint, Toledo University (1980)

  11. Lin, F.H.: On the Dirichlet problem for minimal graphs in hyperbolic space. Invent. Math. 96, 593–612 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. López, R.: Invariant singular minimal surfaces. Ann. Glob. Anal. Geom. 53, 521–541 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nitsche, J.C.C.: A non-existence theorem for the two-dimensional analogue of the catenary. Analysis 6, 143–156 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Serrin, J.: The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R. Soc. Lond. 264, 413–496 (1969)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael López.

Additional information

Partially supported by the Grant No. MTM2017-89677-P, MINECO/AEI/FEDER, UE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, R. The Dirichlet problem for the \(\alpha \)-singular minimal surface equation. Arch. Math. 112, 213–222 (2019). https://doi.org/10.1007/s00013-018-1255-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1255-0

Keywords

Mathematics Subject Classification

Navigation