Skip to main content
Log in

Representations of groups with CAT(0) fixed point property

Archiv der Mathematik Aims and scope Submit manuscript

Cite this article

Abstract

We show that certain representations over fields with positive characteristic of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image. In particular, we obtain rigidity results for representations of the following groups: the special linear group over \({\mathbb {Z}}\), \({\mathrm{SL}}_k({\mathbb {Z}})\), the special automorphism group of a free group, \(\mathrm{SAut}(F_k)\), the mapping class group of a closed orientable surface, \(\mathrm{Mod}(\Sigma _g)\), and many other groups. In the case of characteristic zero, we show that low dimensional complex representations of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image if they always have compact closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramenko, P., Brown, K.S.: Buildings: Theory and Applications. Graduate Texts in Mathematics, vol. 248. Springer, New York (2008)

    MATH  Google Scholar 

  2. Alperin, R.: Two-dimensional representations of groups with property FA. Proc. Am. Math. Soc. 108, 283–284 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ash, R.B.: A Course in Algebraic Number Theory. Dover Books on Mathematics, Mineola (2010)

    MATH  Google Scholar 

  4. Barnhill, A.: The \(FA_n\) conjecture for Coxeter groups. Algebr. Geom. Topol. 6, 2117–2150 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

    MATH  Google Scholar 

  6. Bridson, M.R.: On the dimension of CAT(0) spaces where mapping class groups act. J. Reine Angew. Math. 673, 55–68 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Button, J.O.: Mapping class groups are not linear in positive characteristic. arXiv:1610.08464

  8. Farb, B.: Group actions and Helly’s theorem. Adv. Math. 222, 1574–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grothendieck, A.: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. (French) Inst. Hautes Études Sci. Publ. Math. No. 8 (1961)

  10. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  11. Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131, 2nd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  12. Ronan, M.: Lectures on Buildings. University of Chicago Press, Chicago (2009)

    MATH  Google Scholar 

  13. Schur, I.: Über Gruppen periodischer linearer, Substitutionen, pp. 619–627. Sitzungsberichte der königlich Preussischen Akademie der Wissenschaften, Berlin (1911)

    MATH  Google Scholar 

  14. Serre, J.-P.: Trees. Springer Monographs in Mathematics. Springer, Berlin (2003)

    MATH  Google Scholar 

  15. Varghese, O.: Actions of SAut(\(F_{n}\)). Arch. Math. 110, 319–225 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Varghese.

Additional information

Research partially supported by SFB 878.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, O. Representations of groups with CAT(0) fixed point property. Arch. Math. 111, 231–238 (2018). https://doi.org/10.1007/s00013-018-1200-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1200-2

Keywords

Mathematics Subject Classification

Navigation