Abstract
We show that certain representations over fields with positive characteristic of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image. In particular, we obtain rigidity results for representations of the following groups: the special linear group over \({\mathbb {Z}}\), \({\mathrm{SL}}_k({\mathbb {Z}})\), the special automorphism group of a free group, \(\mathrm{SAut}(F_k)\), the mapping class group of a closed orientable surface, \(\mathrm{Mod}(\Sigma _g)\), and many other groups. In the case of characteristic zero, we show that low dimensional complex representations of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image if they always have compact closure.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Abramenko, P., Brown, K.S.: Buildings: Theory and Applications. Graduate Texts in Mathematics, vol. 248. Springer, New York (2008)
Alperin, R.: Two-dimensional representations of groups with property FA. Proc. Am. Math. Soc. 108, 283–284 (1990)
Ash, R.B.: A Course in Algebraic Number Theory. Dover Books on Mathematics, Mineola (2010)
Barnhill, A.: The \(FA_n\) conjecture for Coxeter groups. Algebr. Geom. Topol. 6, 2117–2150 (2006)
Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)
Bridson, M.R.: On the dimension of CAT(0) spaces where mapping class groups act. J. Reine Angew. Math. 673, 55–68 (2012)
Button, J.O.: Mapping class groups are not linear in positive characteristic. arXiv:1610.08464
Farb, B.: Group actions and Helly’s theorem. Adv. Math. 222, 1574–1588 (2009)
Grothendieck, A.: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. (French) Inst. Hautes Études Sci. Publ. Math. No. 8 (1961)
Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)
Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131, 2nd edn. Springer, New York (2001)
Ronan, M.: Lectures on Buildings. University of Chicago Press, Chicago (2009)
Schur, I.: Über Gruppen periodischer linearer, Substitutionen, pp. 619–627. Sitzungsberichte der königlich Preussischen Akademie der Wissenschaften, Berlin (1911)
Serre, J.-P.: Trees. Springer Monographs in Mathematics. Springer, Berlin (2003)
Varghese, O.: Actions of SAut(\(F_{n}\)). Arch. Math. 110, 319–225 (2018)
Acknowledgements
The author would like to thank the referee for many helpful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Research partially supported by SFB 878.
Rights and permissions
About this article
Cite this article
Varghese, O. Representations of groups with CAT(0) fixed point property. Arch. Math. 111, 231–238 (2018). https://doi.org/10.1007/s00013-018-1200-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00013-018-1200-2